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Abstract. It has been established in [27] that a properly rescaled version of Sinai’s random
walk converges in distribution to Brox’s diffusion. In this article we quantify this convergence
by considering a specific coupling between Sinai’s walk and Brox’s diffusion. Our method
relies on convergence results for martingale problems considered in the rough path setting.
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1. Introduction

Sinai’s random walk is a very popular model of random walk in random environment. It
is fairly simple to describe at a mathematical level, and yet it exhibits a highly non-trivial
asymptotic behaviour as time goes to infinity. Let us describe a simplified version of this
object (a more complete version being laid out in Section 2.1).

The state space for Sinai’s random walk {Xd
n;n ⩾ 1} is Z. The walk is based on a random

environment {ω+
x ;x ∈ Z} which gives the probability of a right jump when one reaches a

level x ∈ Z. The i.i.d. sequence {ω+
x ;x ∈ Z} is defined on a probability space (Ω,G,P).

In the original model treated by Sinai [28], once ω is fixed,the random walk Xd is defined
through the so-called quenched transition probabilities

Pω(Xd
n+1 = x+ 1|Xd

n = x) = ω+
x , Pω(Xd

n+1 = x− 1|Xd
n = x) = ω−

x = 1− ω+
x . (1.1)

Then the so-called the following assumption recurrence assumption is spelled out as

E[log(ω−
x /ω

+
x )] = 0, for all x ∈ Z. (1.2)

Under hypothesis (1.2) it is shown in [29] that Xd is recurrent (almost surely with respect
to the randomness in ω). Moreover (see [28]) and [19]) the asymptotic behavior of the path
n 7→ Xd

n exhibits a highly nontrivial behaviour of the form

Xd
n

log2 n

(d)−→ L, (1.3)

where the limit in distribution is considered with respect to the annealed probability P(dω)×
Pω and where the law of L is described in [19]. Fascinating behaviours like (1.3) have con-
verted random walks in random environments into very popular objects in discrete proba-
bility and mathematical physics.

Remark 1.1. A typical example of distribution satisfying (1.2) is ω+
x ∼ Beta(a, a) distribution

for a parameter a ∈ (0,∞). In this case it is well known that

E
[
log(ω+

x )
]
= ψ(a)− ψ(2a),

where ψ is the digamma function. Therefore it is readily checked that ωx satisfies the
recurrence condition (1.2).

Remark 1.2. Due to some intricate parity issues, we shall in fact work with a lazy version of
Sinai’s random walk. In order to keep technical details to a minimum in the introduction,
we postpone a full description of this lazy random walk to Section 2.1.
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The second object of interest in this article is called Brox diffusion, which has to be
considered as a Brownian motion evolving in a Brownian environment. This continuous
time process {Xc

t ; t ⩾ 0} is based on an environment {W (x);x ∈ R} which is given as a
double-sided Brownian motion. We will define W on the same same space of probability
(Ω,G,P) as the environment ω of the Sinai random walk. Then Xc is formally the solution
of the following stochastic differential equation:

Xc
t = −1

2

∫ t

0

Ẇ (Xc
s) ds+Bt, (1.4)

where B is a standard Brownian motion independent of W . Notice that the drift Ẇ in (1.4)
is a distribution which lies in a Sobolev space of regularity α = −1

2
− ε. The roughness rules

out the possibility to solve (1.4) in a pathwise sense (see e.g. [3] or [7] for optimal results
concerning pathwise definitions of stochastic differential equations with distributional drifts).
Therefore the process Xc is usually seen (like in the original contribution [6]) as the Brownian
motion B composed with a properly defined scale function. A behaviour similar to (1.3) is
proved for Xc in [6]. The similarities pointed out above prompted the community to think
that Brox’s diffusion Xc is the continuous time equivalent of the random walk Xd. This
claim has been made precise in the remarkable paper [27]. In this contribution a version Xδ

of Xd, for δ > 0, is considered. The process Xδ is defined through a proper rescaling of time,
space and environment ω (see Section 2.4 for a detailed description). Then for a fixed time
horizon T it is proved in [27] that

Xδ
|[0,T ]

(d)−→ Xc
|[0,T ], (1.5)

where the convergence is considered with respect to the Skorokhod metric and also with
respect to the annealed probability (as in (1.3)).

The current contribution has to be seen as a progress in the direction of (1.5). Indeed,
Donsker type theorems like (1.5) do not provide any type of knowledge about rates of conver-
gence in distribution. However for diffusion processes or rough differential equations, a good
wealth of information is available for weak type convergences of discretisations (see e.g. [2],
[23]). In this article we wish to establish a rate of convergence for the limit in distribution
(1.5). Our main findings can be summarized as follows (a more quantitative version will be
spelled out in Section 6).

Theorem 1.3. Let Xδ be the lazy version of Sinai’s random walk as described in Section 2.1,
properly rescaled as in Section 2.2. Consider the weak solution Xc to the equation (1.4), as
well as a function h ∈ C3

b . Then there exists a coupling (Xδ, Xc)δ>0 such that for all t ∈ [0, T ]
and δ ∈ (0, 1) we have ∣∣∣Eω [h(Xc

t )]− Eω
[
h(Xδ

t )
] ∣∣∣ ⩽ Ch,T (ω)δ

1
17 , (1.6)

where Ch,T (ω) is a random constant which only depends on h, T and the environment ω.

A few comments about Theorem 1.3 are in order:
(1) To the best of our knowledge, equation (1.6) provides the first quantitative convergence
result for the convergence ofXδ toXc. However, our 1

17
rate of convergence is not expected to

be optimal. Indeed, as the reader will see, our considerations are mostly based on rough path
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analysis applied in a Brownian context (with Hölder regularity α = 1
2
−). Moreover without

anticipating too much on technical details, let us mention that we will use controlled process
expansions of order 1 (which lead to a proper rough paths expansion whenever α > 1

3
). We

would expect our rate of convergence to be of order

max
α∈(0,1/2)

min

{(
1

2
− α

)
, α

}
=

1

4
.

This is seen from (6.24) by taking τ ↑ 1/2 − α, β′ ↑ α and β ↓ 0. However, one has to
consider higher order rough path expansions and higher order controlled processes to make
this work. Even so, at the moment it is still not clear whether 1/4 is expected to be the
optimal convergence rate.
(2) Let us also highlight the fact that (1.6) is a quenched type result. It would be more
consistent with (1.5) to obtain an annealed rate. This would depend on integrability prop-
erties of the random constant Ch,T (ω). We anticipate this integrability to be similar to the
one obtained in [8] for the Jacobian of rough differential equation.
(3) A rate of convergence for the law of Xδ in total variation, Wasserstein or other classical
distances for probability measure seems to be out of reach at this moment. Indeed, our
computations for (1.6) will involve integrations by parts, for which some derivatives of g are
needed.
(4) An important aspect of our method is the fact that we are based on our explicit
coupling between the rescaled Sinai random walks Xδ and the continuous process Xc. While
some other type of coupling can already be found in [17], we believe our coupling might be
interesting in its own right. It certainly allows to transfer some information from Xδ to Xc.
We plan to delve deeper into those aspects in future works.

In order to prove the main Theorem 1.3, our analysis hinges on two main ingredients.
First, as detailed later in Section 3.2, a weak solution to the Brox diffusion equation (1.4)
can be apprehended through its martingale problem. This amounts to consider a family of
PDE’s of the form

∂tft(x)− Lcf(x) = gt(x), t ∈ [0, T ], x ∈ R, (1.7)
where g is a sufficiently smooth function and where the operator Lc is given by

Lcf(x) = 1

2
f ′′(x)− 1

2
Ẇ (x)f ′(x). (1.8)

Note that equation (1.7) is formal at this point, since Ẇ in (1.8) is a distribution. An
important contribution in [9] has been to give a pathwise interpretation for a mild form
of (1.7), thanks to rough paths techniques. We are inspired by this approach here. A
substantial part of our efforts in the paper consist in considering a discrete version of (1.7)
and take limits in the discretisation parameter. The intricate technical details are provided
in Section 6. One should mention at this point the interesting alternative approach in [16] to
pathwise interpretations of equation (1.4). We have decided to stick to [9] in our contribution,
since it is much more likely to be extended to multidimensional settings.

The second crucial ingredient in our strategy is related to pathwise approximations in
Donsker’s theorem. namely the discrete version of the operator (1.8) involves a rescaled
random walk increment called U̇ δ (see (2.17) for the definition). Using some classical results
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by Komlos, Major and Tusnady [21], we are able to couple U̇ δ and Ẇ . This coupling will
be the backbone of our coupling between Xδ and Xc. Observe that our rough path type
approach will force us to state and prove an extension of [21] to Hölder type norms. Also
observe that the methodology outlined above is not restricted to the Sinai random walk
setting. We plan to explore other applications, like branching processes and super-Brownian
motion, in the next future.

Our article is structured as follows: in Section 2 we recall basic facts about Sinai’s random
walk, we properly define its scaling and we introduce related martingale problems. We also
include estimates (some of them new) for the discrete heat kernel which are essential for the
sequel. Section 3 is dedicated to a definition of Brox’s diffusion through martingale problems
considered in the rough paths sense. In particular, we will introduce the rough path setting
employed throughout the article. In Section 4 we derive the rough paths estimates ensuring
a proper solution to the martingale problem of Section 3. While this section is not totally
new when compared with respect to [9], our simplified setting yields clearer calculations.
Moreover, Section 4 lays the ground for our convergence analysis. Section 5 delves into the
strong Donsker type approximations which are at the heart of our method. Building on the
original contribution [21], we obtain a strong approximation result in weighted Hölder norms.
Eventually, Section 6 contains the bulk of our convergence estimates, combining elements
contained in the previous sections.

2. Sinai’s random walk

In this section we collect some basic facts about Sinai’s random walk and define its renor-
malized version on a grid whose mesh goes to 0. As anticipated in the introduction, in order
to avoid periodicity problems for random walks we will handle a lazy version of Sinai’s walk.

2.1. Preliminaries on Sinai’s walk. In this section we properly define a lazy version of
Sinai’s random walk and write some related martingale problems which turn out to be crucial
for our limiting procedure.

2.1.1. Definition of Sinai’s walk. In order to define our random walk, we first characterize
the random environment under consideration. In our case of interest, it is given by a sequence
of independent random variables and a parameter ε ∈ (0, 1) quantifying the randomness of
the walk.

Definition 2.1. Let ε ∈ (0, 1) be a given small number which is fixed throughout the rest
of the paper. The random environment is given by a sequence of i.i.d. random variables
ω+ = {ω+

x : x ∈ Z} defined on a probability space (Ω,G,P) and satisfying the following
conditions:

(i) [Ellipticity] P-almost surely each ω+
x takes values in [κ, 1− ε− κ] where κ is some given

fixed strictly positive number.
(ii) [Recurrence] E[log(ω−

x /ω
+
x )] = 0 where ω−

x ≜ 1− ε− ω+
x .

(iii) [Regularity] The distribution of ω+
x has a C1 density with at most finitely many algebraic

singularities.
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Remark 2.2. The third condition is only set for technical convenience in the application of
the classical KMT approximation theorem (cf. Remark 5.5 for a more detailed discussion).

Notation 2.3. In the sequel 1 − ε will play the role of a variance parameter. From now on
we will thus set σ2 = 1− ε.

Having defined our environment ω, we now introduce the random walk itself.

Definition 2.4. Given the environment of Definition 2.1, one can construct a random walk
Xd (called Sinai’s random walk) on another probability space (Ω̂,F ,Pω) in the following
way:

Pω(Xd
n+1 = y|Xd

n = x) ≜


ε, if y = x;

ω±
x , if y = x± 1;

0, otherwise.

Notice that in the above definition and in the sequel, the superscript d stands for discrete
time parameter. The probability Pω is usually called the quenched probability, for which the
randomness of ω+

x is fixed. Otherwise stated, under Pω the process {Xk : k ⩾ 0} is a Markov
chain on Z whose one-step transition matrix T d can be written as

T df(x) = ω+
x f(x+ 1) + ω−

x f(x− 1) + εf(x). (2.1)
We call Ld the discrete generator of T d, defined by

Ld = T d − Id. (2.2)
Notice that the discrete generator is often defined as Id − T d in the literature. However,
our notation (2.2) allows a better transition to the continuous setting. Furthermore, starting
from (2.1) one can easily deduce the form of the discrete generator T d−Id. Below we state an
elementary proposition expressing this generator as a perturbed discrete Laplace operator,
which will make it easier to relate with its continuous counterpart.

Proposition 2.5. Let Xd be the random walk given by Definition 2.4. Recall that the discrete
generator Ld of Xd is given by (2.2). For f ∈ L∞(Z), we set

∆df(x) ≜ f(x+ 1) + f(x− 1)− 2f(x), ∇̂f(x) ≜ 1

2
[f(x+ 1)− f(x− 1)]. (2.3)

Also define the discrete potential

U̇(x) ≜ ω+
x − ω−

x = 2ω+
x − (1− ε) = 2ω+

x − σ2. (2.4)
Then for f ∈ L∞(Z) we have

Ldf(x) = σ2

2
·∆df(x) + U̇(x) · ∇̂f(x). (2.5)

Proof. Recalling that Ld = T d − Id we have
Ldf(x) = ω+

x f(x+ 1) + ω−
x f(x− 1) + εf(x)− f(x)

=
σ2

2
· (f(x+ 1) + f(x− 1)− 2f(x)) +

(
ω+
x − σ2

2

)
(f(x+ 1)− f(x− 1))

=
σ2

2
·∆df(x) + (2ω+

x − σ2) · ∇̂f(x).
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Taking the definition (2.4) of U̇ into account, this proves our claim (2.5). □

Remark 2.6. The introduction of the “lazy” probability ε is merely for technical convenience.
It avoids parity issues in discrete heat kernel estimates. Indeed, if ε = 0, the second order
term of the generator Ld corresponds to the simple random walk, whose n-step transition
probability function is only supported on either even or odd integer points (depending on the
parity of n and the starting point). This creates non-trivial issues when estimating discrete
derivatives of the transition function. Resolution of such issues requires substantially more
technical effort in the analysis. To reduce technicalities and focus more on the essential
parts, we choose to restrict ourselves to the aperiodic situation. Notice that the generator
of the simple lazy random walk with laziness parameter ε is

L̄dxf(x) ≜
σ2

2
(f(x+ 1) + f(x− 1)− 2f(x)) , (2.6)

where we recall that σ2 = 1− ε.

Remark 2.7. According to [32, Theorem 2.1.2], the reccurrence assumption in Definition 2.1
implies that Xd is recurrent.

2.1.2. Some martingale problems. Our analysis will hinge crucially on asymptotic proper-
ties for some martingale problems related to Xd. We will thus start by labeling the basic
martingale problem for Xd.

Proposition 2.8. Let Xd be the random walk given by Definition 2.4, and consider a func-
tion f ∈ L∞(Z). For j ⩾ 1 set

Zj ≜ f(Xd
j )− T df(Xd

j−1) = f(Xd
j )− Eω

[
f(Xd

j )|Fj−1

]
and Mk ≜

k∑
j=1

Zj. (2.7)

Then for k ⩾ 1 we have

f(Xd
k )− f(Xd

0 )−
k−1∑
j=0

Ldf(Xd
j ) =Mk, (2.8)

where Ld is the operator introduced in (2.5) and the process M =M f is a Pω-martingale.

Proof. We obtain relation (2.8) thanks to some elementary algebraic manipulations (we refer
e.g to [20, Equation (1.3)] for further details). Indeed, a simple telescopic sum argument
reveals that

f(Xd
k )− f(Xd

0 ) =
k∑
j=1

(
f(Xd

j )− f(Xd
j−1)

)
.

We now insert terms of the form T df(Xd
j−1) in order to get

f(Xd
k )− f(Xd

0 ) =
k∑
j=1

(
f(Xd

j )− T df(Xd
j−1)

)
+

k∑
j=1

(
T d − Id

)
f(Xd

j−1).



8 X. GENG, M. GRADINARU, AND S. TINDEL

Since Ld = T d − Id, this immediately yields

f(Xd
k )− f(Xd

0 )−
k−1∑
j=0

Ldf(Xd
j ) =

k∑
j=1

(
f(Xd

j )− T df(Xd
j−1)

)
.

With our notation (2.7) in mind, relation (2.8) is now easily proved. The fact that M is a
martingale is also readily checked. □

In the sequel we will need to introduce some space-time stochastic equations, for which
additional notation has to be introduced.

Notation 2.9. In the remainder of the article the subscripts in ∇n, T dx etc. denote the variable
concerned by the operator at stake (generally either a time or space variable). For instance,
the discrete time gradient of a function f ∈ L∞(N× Z) is written as

∇nf(k, x) = f(k + 1, x)− f(k, x). (2.9)

With Notation 2.9 in hand, we now define a space-time martingale problem related to Sinai’s
random walk.

Proposition 2.10. Let Xd be the random walk given by Definition 2.4, and consider a
function f ∈ L∞(N× Z). For j ⩾ 1 we set

Zj ≜ f(j − 1, Xd
j )− T dxf(j − 1, Xd

j−1) and Mk ≜
k∑
j=1

Zj. (2.10)

Recall that the discrete generator Ld of Xd is given by (2.2). Then for k ⩾ 1 we have

f(k,Xd
k )− f(0, Xd

0 )−
k−1∑
l=0

[
Ldxf(l, Xd

l )−∇nf(l, X
d
l+1)
]
=Mk , (2.11)

and the process M =M f is a Pω-martingale.

Proof. Since T dx defined by (2.1) is the transition matrix of our random walk, for any positive
integer k we have T dxf(k,Xd

j−1) = Eω[f(k,Xd
j )|Fj−1]. Hence the time increment Zj defined

by (2.10) can be written as

Zj = f(j − 1, Xd
j )− Eω

[
f(j − 1, Xd

j )|Fj−1

]
,

from which it is easily deduced that M is a martingale. Moreover, a simple telescoping sum
argument allows us to write

f(k,Xd
k )− f(0, Xd

0 ) =
k∑
j=1

[
f(j,Xd

j )− f(j − 1, Xd
j−1)

]
. (2.12)

For any j ∈ {1, . . . , k}, we decompose the terms on the right hand side of (2.12) as

f(j,Xd
j )− f(j − 1, Xd

j−1) =
[
f(j,Xd

j )− f(j − 1, Xd
j )
]
+
[
f(j − 1, Xd

j )− f(j − 1, Xd
j−1)

]
.
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Therefore, recalling Notation 2.9 together with the definitions (2.10) and (2.2), we obtain

f(j,Xd
j )− f(j − 1, Xd

j−1)

= ∇nf(j − 1, Xd
j ) + Zj +

[
T df(j − 1, Xd

j−1)− f(j − 1, Xd
j−1)

]
= Zj + Ldxf(j − 1, Xd

j−1) +∇nf(j − 1, Xd
j ).

Plugging this information into (2.12) and setting l = j − 1 in the sum, this yields our
claim (2.11). □

2.2. Rescaled version of Sinai’s walk. In this section, we shall describe the dynamics of
Sinai’s walk when this process is accelerated in time and rescaled in space. This will generate
a process which should converge to the Brownian motion in a Brownian environment. In
the sequel, we will simply use δ > 0 to denote the generic scaling parameter, and one would
like to rescale Xd according to δ. However, a naive approach to this rescaling procedure
yields a convergence to a standard Brownian motion as δ → 0 (see e.g. [24]). In order to get
convergence to the Brownian motion in a Brownian environment, we must also renormalize
the environment ω in a proper way. The precise renormalization procedure is specified as
follows, starting with some of the heuristic steps in [27]. Namely going back at least to [28],
the analysis of Xd relies on a potential V d : Z → R which can be expressed as

V (x) =
∑
j∈J0,xK

log(ξj),

where each random variable ξx is defined by

ξx = log

(
σ2 − ω+

x

ω+
x

)
= log

(
ω−
x

ω+
x

)
. (2.13)

The potential V is used e.g. to express hitting probabilities for Xd, see [32]. Now we can
easily invert (2.13) and write

ω+
x =

σ2

1 + eξx
=

σ2

1 + elog(ω
−
x /ω

+
x )
. (2.14)

The scaling which is given below is then based on a scaling of ξx which enables to have each
ω+
x close to σ2/2.

Definition 2.11. Let ω+ = {ω+
x : x ∈ Z} be a given random environment that satisfies

Definition 2.1. Recall that ω−
x = 1− ε− ω+

x = σ2 − ω+
x , where ε = 1− σ2 is the given fixed

“lazy” probability. For each fixed δ > 0, we define a rescaled version of ω+ on the grid δZ by

ω+,δ
x ≜

σ2

1 + e
√
δ log(ω−

x/δ
/ω+

x/δ
)

and ω−,δ
x ≜ σ2 − ω+,δ

x , for all x ∈ δZ. (2.15)

We now describe a rescaled random walk in the rescaled environment given by (2.15) in a
way which mimics Definition 2.4
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Definition 2.12. Given the rescaled environment in Definition 2.11 we define a Sinai type
random walk X̂δ on Ω̂,F ,Pω) with state space δZ by specifying the transitions

Pω(X̂δ
n+1 = y|X̂δ

n = x) ≜


ε, if y = x;

ω±δ
x , if y = x± δ;

0, otherwise.

Our next aim is to obtain a convenient expression for the generator of the walk X̂δ. This
is achieved in the lemma below.

Lemma 2.13. Let X̂δ be the walk introduced in Definition 2.12. We introduce a rescaled
discrete Laplace operator L̄δx and a potential U̇ δ on δZ as

L̄δxf(x) ≜
σ2

2δ2
[f(x+ δ) + f(x− δ)− 2f(x)] . (2.16)

U̇ δ(z) ≜ ω+,δ
z − ω−,δ

z = 2ω+,δ
z − σ2. (2.17)

Also consider the twisted gradient ∇̂δ
x defined by

∇̂δ
xf(x) ≜

1

2δ
(f(x+ δ)− f(x− δ)) =

1

2

(
∇δ
xf(x) +∇δ

xf(x− δ)
)
, (2.18)

where ∇δ
xf is defined on δZ, by

∇δ
xf(x) =

1

δ
(f(x+ δ)− f(x)) . (2.19)

Then the generator Lδ of X̂δ admits the expression

Lδf(x) = L̄δxf(x) +
1

δ
U̇ δ(x) · ∇̂δ

xf(x). (2.20)

Proof. The transition operator T δ for X̂δ is given, for f : δZ → R as

T δf(x) = ω+,δ
x f(x+ δ) + ω−,δ

x f(x− δ) + εf(x). (2.21)

Thus, thanks to the relation σ2 = 1− ε we have

Lδf(x) = 1

δ2
(
T δf(x)− f(x)

)
=

1

δ2
(
ω+,δ
x f(x+ δ) + ω−,δ

x f(x− δ)− σ2f(x)
)
. (2.22)

Therefore resorting to relation (2.16) we can recast (2.22) as

Lδf(x) = L̄δxf(x) +
1

δ2

(
ω+,δ
x − σ2

2

)
f(x+ δ) +

1

δ2

(
ω−,δ
x − σ2

2

)
f(x− δ).

Now recalling from (2.15) that ω−,δ
x = σ2 − ω+,δ

x we can write

Lδf(x) = L̄δxf(x) +
1

δ

(
ω+,δ
x − σ2

2

)
· 1
δ
(f(x+ δ)− f(x− δ)) .

With the definition (2.18) of ∇̂δ
xf in mind, our claim (2.20) is now easily proved. □

Let us also introduce the time partition and the related discrete time derivative we will
deal with in the sequel.
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Definition 2.14. Let T > 0 be a fixed time horizon. In the remainder of the paper we
consider Πδ = {t0, . . . , tN} a division of the interval [0, T ] with step size δ2, where N =
⌊T/δ2⌋. A generic element of this partition will be denoted by tj = jδ2. We also introduce
the rescaled discrete gradient of a function f ∈ L∞(N× Z), given as follows for tj ∈ Πδ and
x ∈ δZ,

∇δ
tftj(x) ≜

1

δ2
(ftj+1

(x)− ftj(x)). (2.23)

Finally we introduce a notation for discrete intervals, namely for s, t ∈ [0, T ] we write
tj ∈ Js, tK for tj ∈ [s, t] ∩ Πδ. We will also write Ls, tK for tj ∈ (s, t] ∩ Πδ.

Let us now define the rescaled random walks which will feature in our coupling procedure.

Definition 2.15. Throughout the paper, we designate by X̂δ = {X̂δ
j ; j ≥ 1} the random

walk on δZ with transition T δ given by (2.21). Then the time-accelerated random walk Xδ

considered below is given by

Xδ
t := X̂δ

⌊t/δ2⌋ =
∑
j⩾0

X̂δ
j 1[tj ,tj+1)(t), (2.24)

where we have used the notation of Definition 2.14 for the partition Πδ = {t0, . . . , tN}. The
filtration related to the process Xδ is then given by {Fω,δ

tj : tj ∈ Πδ}, with

Fω,δ
tj ≜ σ

{
X̂δ
k : k ⩽ j

}
= σ

{
Xδ
tk
: k ⩽ j

}
(2.25)

and where the superscript ω in Fω,δ
tj means that the random environment ω is frozen.

Remark 2.16. The rescaling of the random environment given in Definition 2.11 is con-
sistent with the one in [27] for the corresponding weak convergence result. Indeed, with
relations (2.13) and (2.17) in mind, it is readily checked that

Var(U̇ δ
x) = Var

(
σ2

(
2

1 + e
√
δ ξx/δ

− 1

))
= σ4Var(Zδ

x), (2.26)

where we have set

Zδ
x =

1− e
√
δ ξx/δ

1 + e
√
δ ξx/δ

.

Now a first order approximation of Zδ
x when δ → 0 is given by

Zδ
x ∼

√
δ

2
ξx/δ. (2.27)

Plugging this information into (2.26) we obtain

Var(U̇ δ
x) ∝ δ,

which is a key constraint for proving convergence under the current perspective (cf. Sec-
tion 2.4 below for a more detailed explanation on this point).

In the context of Definition 2.15, the martingale problem (2.8) can be rescaled on the grid
δZ. We label this property in the proposition below for further use.
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Proposition 2.17. For the random environment outlined in Definition 2.11 and δ ∈ (0, 1),
let Xδ be the rescaled random walk introduced in Definition 2.15. Consider a function f ∈
L∞(δZ). Then for all s, t ∈ J0, T K, we have

f(Xδ
t )− f(Xδ

s )− δ2
∑

tj∈Js,tM

Lδf(Xδ
tj
) =M δ

t −M δ
s , (2.28)

where the process M δ = M δ,f is a Pω-martingale with respect to the filtration {Fω,δ
tj } intro-

duced in (2.25) given by

M δ
t ≜

∑
tj∈L0,tK

Zδ
tj

with Zδ
tj
≜ f(Xδ

tj
)− T δf(Xδ

tj−1
).

Similarly to Proposition 2.10, we can also define a space-time renormalized discrete mar-
tingale problem related to Xδ. Its proof is very similar to the proof of Proposition 2.10 and
is thus omitted for sake of conciseness.

Proposition 2.18. Recalling the notation of Definition 2.14 and Definition 2.15, let Xδ

be given by (2.24) and consider f ∈ L∞(J0, T K × Z). Then for any s, t ∈ J0, T K and any
δ ∈ (0, 1), we have

ft(X
δ
t )− fs(X

δ
s )−

∑
tj∈Js,tM

δ2
[
Lδftj(Xδ

tj
)−∇δ

tftj(X
δ
tj+1

)
]
=M δ

t −M δ
s , (2.29)

where M δ is a Pω-martingale with respect to the filtration {Fω,δ
tj } given by

M δ
t ≜

∑
tj∈L0,tK

Zδ
tj

with Zδ
tj
≜ ftj(X

δ
tj
)− T δftj(X

δ
tj−1

). (2.30)

We close this section by giving a representation of the martingale M δ which will be useful
in order to take limits to the Brownian motion in Brownian environment.

Proposition 2.19. Let {Zδ
tj
; j ⩾ 1} be the sequence of random variables defined by (2.30).

We introduce {ζ̄δj : j ⩾ 1} and {ζx,δj : j ⩾ 1} sequences of i.i.d. random variables defined by

ζ̄δj ≜ 1{Uj>ε,Vj⩽1/2} − 1{Uj>ε,Vj>1/2} (2.31)
and

ζx,δj ≜ 1{Uj>ε,Vj⩽ω
+,δ
x /(1−ε)} − 1{Uj>ε,Vj>ω

+,δ
x /(1−ε)}, (2.32)

where {(Uj, Vj) : j ⩾ 1} are independent copies of uniform random variables on [0, 1]. Then
the following relation holds true in distribution:

Zδ
tj+1

=
1

2

(
ftj+1

(Xδ
tj
+ δ)− ftj+1

(Xδ
tj
− δ)

)
· ζ̄δj+1 (2.33)

+
1

2

(
ftj+1

(Xδ
tj
+ δ)− ftj+1

(Xδ
tj
− δ)

)
·
((
ζx,δj+1 − ζ̄δj+1

)
− Eω

[
ζx,δj+1 − ζ̄δj+1|Ftj

])
+

1

2

(
ftj+1

(Xδ
tj
+ δ)− 2ftj+1

(Xδ
tj
) + ftj+1

(Xδ
tj
− δ)

)
·
((
ζ̄δj+1

)2 − Eω
[(
ζ̄δj+1

)2 |Ftj

])
,

where x ≜ Xδ
tj

and Ftj is a slight variation of (2.25) defined by

Ftj ≜ σ
{
ζ̄δk , ζ

x,δ
k : k ⩽ j

}
.
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Proof. We invoke a generalization of a discrete Itô formula stated in [12]. Namely if {Stj ; tj =
jδ2} is a random walk on δZ such that Stj+1

= Stj + ξtj with ξtj ∈ {−δ, 0, δ}, then for
f : δ2N× δZ → R we have

ftj+1
(Stj+1

)− ftj(Stj) =
1

2δ

(
ftj+1

(Stj + δ)− ftj+1
(Stj − δ)

)
(Stj+1

− Stj) (2.34)

+
1

2δ2
(
ftj+1

(Stj + 1) + ftj+1
(Stj − 1)− 2ftj+1

(Stj)
)
(Stj+1

− Stj)
2 + ftj+1

(Stj)− ftj(Stj).

Moreover, having in mind the sequences ζ̄δ and ζx,δ introduced in (2.31) and (2.32) respec-
tively, Xδ admits the following representation:

Xδ
tj+1

(d)
= Xδ

tj
+ δ · ζx,δj+1,

Since the difference Xδ
tj+1

−Xδ
tj

takes values in {−δ, 0, δ}, one can apply (2.34) in order to
get

ftj+1
(Xδ

tj+1
)− ftj(X

δ
tj
) = ftj+1

(Xδ
tj
)− ftj(X

δ
tj
)

+
1

2δ

(
ftj+1

(Xδ
tj
+ δ)− ftj+1

(Xδ
tj
− δ)

)(
δ · ζx,δj+1

)
+

1

2δ2

(
ftj+1

(Xδ
tj
+ δ)− 2ftj+1

(Xδ
tj
) + ftj+1

(Xδ
tj
− δ)

)(
δ · ζx,δj+1

)2
. (2.35)

We now evaluate T δftj+1
(Xδ

tj
), for which we start from the simple decomposition

T δftj+1
(Xδ

tj
) = Eω

[
ftj+1

(Xδ
tj+1

)|Ftj

]
= Eω

[
ftj+1

(Xδ
tj+1

)− ftj(X
δ
tj
)|Ftj

]
+ ftj(X

δ
tj
).

Therefore, taking expected values in (2.35) we end up with

T δftj+1
(Xδ

tj
) =

1

2

(
ftj+1

(Xδ
tj
+ δ)− ftj+1

(Xδ
tj
− δ)

)
Eω
[
ζx,δj+1|Ftj

]
+

1

2

[
ftj+1

(Xδ
tj
+ δ)− 2ftj+1

(Xδ
tj
) + ftj+1

(Xδ
tj
− δ)

]
Eω
[(
ζx,δj+1

)2
|Ftj

]
+ ftj+1

(Xδ
tj
)− ftj(X

δ
tj
) + ftj(X

δ
tj
). (2.36)

Recall from (2.30) that Zδ
tj+1

= ftj+1
(Xδ

tj+1
) − T δftj+1

(Xδ
tj
). Hence subtracting (2.36) from

relation (2.35), we get

Zδ
tj+1

=
1

2

(
ftj+1

(Xδ
tj
+ δ)− ftj+1

(Xδ
tj
− δ)

)
·
(
ζx,δj+1 − E

[
ζx,δj+1|Ftj

])
(2.37)

+
1

2

(
ftj+1

(Xδ
tj
+ δ)− 2ftj+1

(Xδ
tj
) + ftj+1

(Xδ
tj
− δ)

)
·
((

ζx,δj+1

)2
− E

[(
ζx,δj+1

)2
|Ftj

])
.

In order to conclude, we first observe that

(ζx,δj+1)
2 = (ζ̄δj+1)

2. (2.38)
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Indeed, by definition we have(
ζ̄δj+1

)2
= 1{Uj+1>ε,Vj+1⩽1/2} + 1{Uj+1>ε,Vj+1>1/2}

− 21{Uj+1>ε,Vj+1⩽1/2}1{Uj+1>ε,Vj+1>1/2} = 1{Uj+1>ε}.

The same relation holds for (ζx,δj+1)
2. Therefore, (2.38) holds. By adding and subtracting

ζ̄δj+1 − Eω[ζ̄δj+1|Ftj ] to the right hand side of (2.37), and using the relation (2.38), we easily
obtain our claim (2.33). □

Remark 2.20. On the right hand side of (2.33), we will see in the next sections that the limit
of the sum (over j) of the first term yields a continuous martingale (3.16) (which will be a
stochastic integral with respect to a Brownian motion B), while the limit of the sum of the
second and third terms is zero.

2.3. Mild formulation of a discrete PDE. Equation (2.29) involves the operator ∇δ−Lδ.
Related to this fact, for a function g ∈ L∞(J0, T K × δZ) one would like to give a meaning
and solve the following forward discrete partial differential equation,

∇δ
tftj(x)− Lδxftj(x) = gtj(x). (2.39)

where we recall that ∇δ
t is given by (2.23). As a preliminary step, we introduce the associated

symmetric random walk and the discrete heat kernel as follows.

Definition 2.21. Recall that L̄δ was the operator defined for x ∈ δZ by (2.16). We consider
the renormalized lazy symmetric random walk Y δ, whose generator is L̄δ. We will denote
the corresponding renormalized discrete heat kernel by pδ. Due to the homogeneity of Y δ,
the kernel pδ is defined on J0, T K × δZ as the transition function of Y δ, namely

pδs(x) ≜ P
(
Y δ
t+s = x|Y δ

t = 0
)
. (2.40)

The corresponding transition operator on L2(δZ) is denoted by P δ.

Remark 2.22. In a non-rescaled situation, corresponding to δ = 1 in Definition 2.21, we shall
use a superscript d as in Section 2.1. Therefore we shall consider objects of the form Y d, pd,
P d, L̄d or ∇̂d

x. It should be noticed that pδ can be expressed in terms of pd in the following
way:

pδs(x) = pds/δ2(x/δ), (s, x) ∈ δ2Z× δZ. (2.41)

We would now like to express the solution of equation (2.39) in terms of a suitable fixed
point problem which allows us to compare with the continuum limit. To this aim, we derive
the mild formulation of our discrete partial differential equation below.

Proposition 2.23. Let Lδ be the operator defined by (2.21) and consider g ∈ L∞(J0, T K ×
δZ). Recall that the discrete heat kernel pδ is introduced in (2.40). Then the mild form of
equation (2.39) can be written for x ∈ δZ as

ftj(x) = Gtj(x) + Jtj(x), (2.42)

where the function G is given for x ∈ δZ by:

Gtj(x) =
∑
y∈δZ

pδtj(x− y)f0(y) + δ2
j−1∑
ℓ=0

∑
y∈δZ

pδtj−1−tℓ(x− y)gtℓ(y).
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In equation (2.42) we also have that Jtj(x) can be expressed as below (recall that the twisted
gradient ∇̂δ

x is defined by relation (2.18)):

Jtj(x) = δ

j−1∑
ℓ=0

∑
y∈δZ

pδtj−1−tℓ(x− y)U̇ δ(y)∇̂δ
xftℓ(y), (2.43)

where we recall that U̇ δ(y) is given by (2.17).

Proof. We divide the proof into several steps. For the sake of clarity, we will first derive the
mild formulation in a non-rescaled case (namely δ = 1). Specifically, recalling the notation U̇
introduced in (2.4) as well as Proposition 2.5 and Remark 2.22, we can recast equation (2.39)
in the non-rescaled case as

∇kfk(x) = L̄dxfk(x) + U̇(x) ∇̂xfk(x) + gk(x), (2.44)

where f0 is given as an initial condition. Note that existence and uniqueness for equa-
tion (2.44) is trivial. In fact, by the definition of ∇k, one can easily build up the solution
recursively from the initial data f0. We start by deriving the mild formulation for (2.44).

Step 1: Mild formulation for the free equation. Let us first consider the standard homoge-
neous free equation:

∇d
kFk(x) = L̄dxFk(x), with initial condition F0(x) = f0(x). (2.45)

Recalling our Remark 2.22 about the symmetric random walk Y d on Z and its transition
operator P d, the solution to (2.45) is given by

FH
k (x) = P d

k f0(x) = Eω[f0(Y d
k )|Y d

0 = x]. (2.46)

Although relation (2.46) is very classical, we now proceed to its verification due to similar
manipulations to be performed later in the proof. To this aim, let FH be the space-time
function defined by the right hand side of (2.46). According to the Markov property, we have

FH
k+1(x) =

∑
y∈Z

pd1(x− y)Eω
[
f0(Y

d
k )|Y d

0 = y
]

= εFH
k (x) +

1− ε

2

(
FH
k (x+ 1) + FH

k (x− 1)
)
.

Therefore,

∇kF
H
k (x) = Fk+1(x)− Fk(x) =

σ2

2
∆d
xF

H
k (x) = L̄dxFH

k (x).

Step 2: Mild formulation of an inhomogeneous pde. Next we consider a function g defined
on N× Z and the standard inhomogeneous equation{

∇kFk(x) = L̄dxFk(x) + gk(x),

F0(x) = f0(x).
(2.47)
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One can derive an expression for F in terms of FH thanks to Duhamel’s principle. Namely
we claim that F can be written as

Fk(x) = FH
k (x) +

k−1∑
j=0

Eω[gj(Y d
k−1−j)|Y d

0 = x], (2.48)

where we have used the convention
∑−1

j=0 ≜ 0. Indeed, for F defined by (2.48) we have

∇kFk(x) = ∇kF
H
k (x) + gk(x) +

k−1∑
j=0

Eω[gj(Y d
k−j)− gj(Y

d
k−1−j)|Y d

0 = x]. (2.49)

Hence recalling the notation for the transition operator P d in Remark 2.22 as well as equa-
tion (2.45) for FH , we get

∇kFk(x) = L̄dxFH
k (x) + gk(x) +

k−1∑
j=0

(
P d − Id

)
P d
k−j−1gj(x) (2.50)

Now thanks to the fact that P d − Id = L̄d and resorting to the definition of F in the right
hand side of (2.48), we end up with

∇kFk(x) = L̄dxFH
k (x) + gk(x) +

k−1∑
j=0

L̄dxEω[gj(Y d
k−1−j)|Y d

0 = x]

= L̄dxFk(x) + gk(x). (2.51)

Our claim (2.48) is now achieved.

Step 3: Mild formulation for the PDE in a random environment. Finally, we consider the
original equation (2.44), whose solution is called f . Also recall that F designates the solution
to (2.47), and we set

Φk(x) ≜ Fk(x)− fk(x). (2.52)
Subtracting the right hand side of (2.47) from the right hand side of (2.44), it follows that
Φ0(·) = 0 and

∇kΦ = ∇kF −∇kf = L̄dxΦ− U̇(x) · ∇̂xf.

The above equation is of the form (2.47) with g = −U̇ · ∇̂xf and f0 = 0. Therefore, applying
(2.48) with FH = 0 we get the following expression for Φ:

Φk(x) = −
k−1∑
j=0

Eω[U̇(Y d
k−1−j) · ∇̂xfj(Y

d
k−1−j)|Y d

0 = x]. (2.53)

We now gather relations (2.48), (2.52) and (2.53) in order to get the following expression for
the solution f to (2.44),

fk(x) = Eω[f0(Y d
k )|Y d

0 = x] +
k−1∑
j=0

Eω[gj(Y d
k−1−j)|Y d

0 = x]

+
k−1∑
j=0

Eω[U̇(Y d
k−1−j) · ∇̂xfj(Y

d
k−1−j)|Y d

0 = x]. (2.54)
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Notice that in (2.54) we have chosen to write the formula in terms of the symmetric random
walk Y d. Recalling Definition 2.21 and Remark 2.22 for the symmetric random walk kernel
pd, one can recast (2.54) as

fk(x) =
∑
y∈Z

pdk(x− y)f0(y) +
k−1∑
j=0

∑
y∈Z

pdk−1−j(x− y)gj(y)

+
k−1∑
j=0

∑
y∈Z

pdk−1−j(x− y)U̇(y)∇̂xfj(y). (2.55)

Observe that since pd is finitely supported, the sums over y ∈ Z in (2.55) are in fact finite
sums. Otherwise stated, we have proved (2.42) for δ = 1.

Step 4: Rescaling the equation. Now let us move to the rescaled picture and write down
the solution to the corresponding discrete pde. We will also illustrate the fact that Defi-
nition 2.11 is the suitable rescaling for the random environment. As in Definition 2.11 and
Definition 2.14, we use tk to denote a generic point in δ2N and x to denote a generic point in
δZ. We also write Lδ, L̄δ, ∇̂δ

x and ∇δ
t for the rescaled operators respectively given by (2.21),

(2.16), (2.18) and (2.23). Recall that we obtained the relation (2.20) connecting Lδ, L̄δ and
∇̂δ
x .
With relation (2.20) in hand and given an initial condition f0, we are now interested in

the following rescaled pde:

∇δ
tk
ftk(x) = Lδxftk(x) + gtk(x). (2.56)

Let us start by mimicking Step 1 and Step 2 in the rescaled picture. First the solution to
the homogeneous free equation is now given by

FH,δ
tk

(x) = Eω[f0(Y δ
tk
)|Y δ

0 = x],

where Y δ is the rescaled random walk introduced in Definition 2.21. In addition, the solution
to the standard inhomogeneous equation corresponding to (2.56) needs to be adjusted as

F δ
tk
(x) = FH,δ

tk
(x) + δ2

k−1∑
j=0

Eω[gtj(Y δ
tk−1−tj)|Y

δ
0 = x]. (2.57)

With respect to (2.48), the appearance of the factor δ2 in (2.57) is easily checked. Indeed,
let F δ

tk
(x) be defined by equation (2.57). Then we have

F δ
tk+1

(x)− F δ
tk
(x) = FH,δ

tk+1
(x)− FH,δ

tk
(x) + δ2gtk(x)

+ δ2
k−1∑
j=0

(
Eω[gtj(Y δ

tk−tj)|Y
δ
0 = x]− Eω[gtj(Y δ

tk−1−tj)|Y
δ
0 = x]

)
. (2.58)

Moreover, similarly to (2.50) and (2.51), we obtain

Eω[gtj(Y δ
tk−tj)|Y

δ
0 = x]− Eω[gtj(Y δ

tk−1−tj)|Y
δ
0 = x] = δ2L̄δxEω[gtj(Y δ

tk−1−tj)|Y
δ
0 = x]. (2.59)
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Therefore, plugging (2.59) into (2.58) we have

F δ
tk+1

(x)− F δ
tk
(x) = FH,δ

tk+1
(x)− FH,δ

tk
(x) + δ2gtk(x) + δ4

k−1∑
j=0

L̄δxEω[gtj(Y δ
tk−1−tj)|Y

δ
0 = x],

Since ∇δ
t is defined by (2.23), we thus get

∇δ
tF

δ
tk
(x) = ∇δ

tF
H,δ
tk

(x) + gtk(x) + δ2
k−1∑
j=0

L̄δxEω[gtj(Y δ
tk−1−tj)|Y

δ
0 = x].

On the other hand, if F δ is given by (2.57) we also have

L̄δxF δ
tk
(x) = L̄δxF

H,δ
tk

(x) + δ2
k−1∑
j=0

L̄δxEω[gtj(Y δ
tk−1−tj)|Y

δ
0 = x].

Consequently, similarly to (2.51) we have proved that F δ defined by (2.57) solves the non
homogeneous equation

∇δ
tF

δ
tk
(x) = L̄δxF δ

tk
(x) + gtk(x).

Starting from the above relation, we let the patient reader check (along the same lines going
from (2.48) to (2.55)) that the solution f to (2.39) is expressed in the mild form by

ftk(x) =
∑
y∈δZ

pδtk(x− y)f0(y) + δ2
k−1∑
j=0

∑
y∈δZ

pδtk−1−tj(x− y)gtj(y)

+ δ
k−1∑
j=0

∑
y∈δZ

pδtk−1−tj(x− y)U̇ δ(y)∇̂δ
xftj(y).

We have thus shown relation (2.42), which finishes the proof. □

In order to connect the mild equation (2.42) with its continuous counterpart, it will be
beneficial to proceed to an integration by parts procedure. This is summarized in the next
proposition.

Proposition 2.24. Under the setting and conditions of Proposition 2.23, let J be the term
defined by (2.43). For an arbitrary a ∈ δZ and y ∈ δZ also set

Iδt (a, y) ≜
∑

z∈Ja+2δ,yK

U̇ δ(z) ∇̂δ
xft(z), (2.60)

where we recall that U̇ δ is defined by (2.17). Then the following holds true:

(i) An alternative way to write Jtj(x) is given by

Jtj(x) = δ2
j−1∑
ℓ=0

∑
y∈δZ

∇δ
xp

δ
tj−1−tℓ(x− δ − y) Iδtℓ(a, y). (2.61)
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(ii) Let f be the solution of the mild equation (2.42). The equation governing the derivative
∇δ
xftj(x) can be written for x ∈ δZ as

∇δ
xftj(x) = ∇δ

xGtj(x) + δ2
j−1∑
ℓ=0

∑
y∈δZ

∇2,δ
x pδtj−1−tℓ(x− y) Iδtℓ(a, y), (2.62)

where for φ ∈ L∞(δZ) we define

∇2,δ
x φ(x) ≜

1

δ2
(φ(x+ δ) + φ(x− δ)− 2φ(x)) .

(iii) We also obtain an equation for the twisted derivative ∇̂δ
xf of f , namely:

∇̂δ
xftj(x) = ∇̂δ

xGtj(x) + δ2
j−1∑
ℓ=0

∑
y∈δZ

∇̂δ
x∇δ

xp
δ
tj−1−tℓ(x− δ − y)Iδtℓ(a, y). (2.63)

Proof. We start from the expression (2.43) for J and perform a discrete integration by parts.
To this aim, we first notice from (2.60) that

Iδtℓ(a, y)− Iδtℓ(a, y − δ) = U̇ δ(y)∇̂δ
xftℓ(y).

Hence using the fact that pδt (x, ·) is finitely supported, we can rewrite the second sum in (2.43)
as

Qδ
j =

∑
y∈δZ

pδtj−1−tℓ(x− y)
(
Iδtℓ(a, y)− Iδtℓ(a, y − δ)

)
=

∑
y∈δZ

pδtj−1−tℓ(x− y)Iδtℓ(a, y)−
∑
y∈δZ

pδtj−1−tℓ(x− y)Iδtℓ(a, y − δ).

Therefore resorting to an elementary change of variables in the right hand side above, we
end up with

Qδ
j =

∑
y∈δZ

(
pδtj−1−tℓ(x− y)− pδtj−1−tℓ(x− δ − y)

)
Iδtℓ(a, y)

= δ
∑
y∈δZ

∇δ
xp

δ
tj−1−tℓ(x− δ − y) Iδtℓ(a, y).

Plugging this identity into (2.43) we have proved our claim (2.61). Relations (2.62) and
(2.63) are then easily obtained by taking discrete derivatives on both sides of (2.61), which
ends the proof of Proposition 2.24. □

2.4. Heuristic considerations and rescaling. With Proposition 2.24 in hand, let us
briefly outline the coupling strategy at the heart of our considerations. Specifically, one
can gather Propositions 2.23 and 2.24 and write the mild form of equation (2.39) as

ftj(x) = G1
tj
(x) +G2

tj
(x) + Jtj(x), (2.64)

where

G1
tj
(x) =

∑
y∈δZ

pδtj(x− y)f0(y), G2
tj
(x) = δ2

j−1∑
ℓ=0

∑
y∈δZ

pδtj−1−tℓ(x− y)gtℓ(y),
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and where the term Jtj(x) is defined by (2.61). Let us now figure out heuristically how
relation (2.64) will converge to a continuous limit. First of all, the local central limit theorem
(see e.g. [25]) implies formally that if (xδ) ∈ δZ converges to x ∈ R then we have

lim
δ→0

1

δ
pδt (xδ) = pt(x), (2.65)

where pδ is introduced in (2.40). Also note that in (2.65), p designates the heat kernel on R
(with variance σ2 ≜ 1− ε) given by

pt(x) =
1√

2πσ2t
e−

x2

2σ2t . (2.66)

Now let us recast the term G1 in (2.64) as

G1
tj
(x) = δ

∑
y∈δZ

1

δ
pδtj(x− y)f0(y). (2.67)

Using relation (2.65) and convergence of Riemann sum considerations, it is easily conceived
that

lim
δ→0

G1
tj
(x) =

∫
R
pt(x− y)f0(y)dy. (2.68)

In the same way we expect that

lim
δ→0

G2
tj
(x) =

∫ t

0

∫
R
pt−s(x− y)gs(y)dy ds. (2.69)

In order to derive the heuristics about the limiting behavior of the term J in (2.64), let
us analyse the sum Iδt (x, y) defined by (2.60). This will also yield an explanation for our
renormalisation of the environment ω. Indeed, the term ∇̂δ

xft(z) in the definition of Iδt (x, y)
is expected to converge to ∂xft(z). Thus we also expect to have (whenever tj → t)

lim
δ→0

Iδtj(a, y) = lim
δ→0

∑
z∈Ja+2δ,yK

U̇ δ(z)∇̂δ
xftj(z) =

∫ y

a

∂zfs(z)dW (z), (2.70)

where W (z) is a Brownian motion on R with suitable variance τ 2. Now if we want (2.70) to
hold, this imposes that Var(U̇ δ(z)) is of order δ for all z ∈ δZ. According to Remark 2.16,
we are led to renormalization of the environment ω given by Definition 2.11.

Let us summarize our computations so far. If we gather (2.68), (2.69) and (2.70), we
expect the discrete equation (2.64) to converge to the PDE given in (3.9) below. Our aim
is to justify this assertion in the following sections, and provide a rate of convergence in the
limiting procedure thanks to a coupling method.

2.5. Estimates for the discrete heat kernel. In Section 2.3 we have defined the simple
random walk Y δ related to the generator L̄δ in Definition 2.21. In this section we review some
notation about the transition kernels for Y δ and state some useful Gaussian type bounds.
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Recall that Y d = {Y d
n : n ∈ N} is the symmetric random walk with one-step transition

density given by

P(Y d
n+1 = l|Y d

n = k) =


ε, if l = k;
1−ε
2
, if l = k ± 1;

0, otherwise.

Noticing that Y d is space time-homogeneous, the n-step transition function of Y d is denoted
as

pdn(k) ≜ P(Y d
n = k|Y d

0 = 0). (2.71)
One can also view Y d

n = Y d
0 + ξ1 + · · · + ξn, where {ξi : i ⩾ 1} is an i.i.d. sequence with

distribution
P(ξ1 = 0) = ε, and P(ξ1 = 1) = P(ξ1 = −1) =

1− ε

2
.

Note that the variance of ξ1 is Var[ξ1] = 1 − ε = σ2. Given δ > 0, we shall consider the
following rescaled version of the kernel pd on the space-time grid δ2N× δZ, defined by

p̂δt (x) ≜
1

δ
pdt/δ2(x/δ) =

1

δ
pδt (x), for (t, x) ∈ δ2N× δZ , (2.72)

where pδ is introduced in (2.41). We also recall that pt(x) denotes the continuous heat kernel
with variance σ2 = 1− ε :

pt(x) ≜
1√

2πσ2t
e−

x2

2σ2t , t > 0, x ∈ R. (2.73)

Let us summarize some notation about discrete spatial gradients on the grid δZ for δ > 0.
First we have set, for x ∈ δZ,

∇δ
xf(x) =

1

δ
(f(x+ δ)− f(x)) , and ∇̂δ

xf(x) =
1

2δ
(f(x+ δ)− f(x− δ)) . (2.74)

For higher order rescaled discrete gradients, we have used the following conventions:

∇2,δ
x f(x) =

1

δ2
(f(x+ δ) + f(x− δ)− 2f(x)) (2.75)

∇̃3,δ
x f(x) = ∇δ

x∇2,δ
x f(x) =

1

δ

(
∇2,δ
x f(x+ δ)−∇2,δ

x f(x)
)

(2.76)

∇4,δ
x f(x) =

1

δ4
(f(x+ 2δ)− 4f(x+ δ) + 6f(x)− 4f(x− δ) + f(x− 2δ)) (2.77)

Also recall from (2.23) that the rescaled discrete time gradient ∇δ
t is given on δ2N× δZ by

∇δ
tftj(x) ≜

1

δ2
(ftj+1

(x)− ftj(x)).

With this series of notation in hand, let us highlight the fact that the discrete heat kernel p̂δ
displayed in (2.72) satisfies the discrete heat equation

∇δ
t p̂
δ
tj
(x) =

σ2

2
∇2,δp̂δtj(x) = L̄δxp̂δtj(x), (2.78)

where the operator L̄δx is introduced in (2.16). We now state a quantitative local central
limit theorem (CLT) as well as a uniform bound on the discrete kernel p̂δ.
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Theorem 2.25 (cf. [25]). Recall that pdn(k) is the discrete kernel of Y d defined by (2.71), and
pt(x) is the Gaussian kernel with variance σ2 = 1− ε defined by (2.73). Then for m = 2, 4
there exists a constant Cm,ε > 0 depending only on m and ε, such that∣∣∇m

x p
d
n(x)−∇m

x pn(x)
∣∣ ⩽ Cm,ε

n(m+3)/2
, for all n ⩾ 1 and k ∈ Z. (2.79)

The following uniform Gaussian upper bound for the discrete kernel p̂δ is classical. The
proof for the cases when m = 0, 1 is essentially contained in [15, Theorem 5.1]. However,
to our best knowledge the case for higher derivatives does not seem to be easily available in
the literature and the extension of the argument in [15] is not entirely straightforward. We
thus provide an independent proof based on the local CLT and the Markov property, which
works for any order of spatial derivatives ∇m.

Proposition 2.26. For δ > 0, let p̂δ the kernel defined by (2.72). Consider the gradient
∇2,δ
x given by (2.75), as well as the gradient ∇4,δ

x introduced in (2.77). Then for m = 2, 4
there exist two universal constant C1, C2 > 0 depending only on m and the lazy parameter ε,
such that ∣∣∇m,δp̂δt (u)

∣∣ ⩽ C1

t(m+1)/2
e−C2u2/t, (2.80)

for all (t, u) ∈ δ2N× δZ with t > 0. For t = 0, the bound (2.80) becomes∣∣∇m,δp̂δ0(u)
∣∣ ⩽ C2

δm+1
1{|u|⩽δ}. (2.81)

Proof. For t = 0 we have p̂δ0(x) = δ−11{x=0}. Hence the bound (2.81) derives immediately
from the definitions (2.75)-(2.77). In what follows we thus focus on proving (2.80).
Step 1: Strategy. In order to prove (2.80), fix m = 2 for sake of clarity (the case m = 4 is
treated very similarly). Writing explicitly the definition (2.75) of ∇m,δ and resorting to the
expression (2.72) for p̂δt , we let the reader check that (2.80) is equivalent to the non rescaled
version ∣∣∇mpdn(k)

∣∣ ⩽ a

n(m+1)/2
e−bk

2/n, for all n ⩾ 1 and k ∈ Z, (2.82)

where ∇m is defined by (2.75) with δ = 1 and pd is defined in (2.71). In (2.82), the numbers
a, b are universal constants depending only on m and ε. The choice of a, b will be clear in
the course of the proof. We are going to prove (2.82) by induction on n. The main idea
is that the quantitative local CLT (cf. Theorem 2.25) easily yields (2.82) for the regime
{k : |k|2 ≲ n}. The other regime is then handled by induction and the Markov property. In
what follows, the notation Csubscript denotes a constant depending only on the parameters
specified in the subscript whose value may change from line to line.
Step 2: Case |k2| ⩽ Λn. To begin with, by applying the triangle inequality to (2.79) we
obtain that ∣∣∇mpdn(k)

∣∣ ⩽ ∣∣∇mpn(k)
∣∣+ Cm,ε

n(m+3)/2
for all n ⩾ 1 and k ∈ Z. (2.83)

By the explicit expression (2.73) of pn(k), it is easy to show that∣∣∇mpn(k)
∣∣ ⩽ Cm,ε

n(m+1)/2
e−

k2

2σ2n for all n ⩾ 1 and k ∈ Z. (2.84)
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Now let Λ be a positive universal constant whose value will be specified later on. According
to (2.83) and (2.84), we arrive at the following estimate:∣∣∇mpdn(k)

∣∣ ⩽ Cm,ε,Λ
n(m+1)/2

e−
k2

2σ2n for all n, k such that |k2| ⩽ Λn. (2.85)

This proves (2.82) for |k2| ⩽ Λn.
Step 3: Inductive procedure. Let Cm,ε,Λ and σ2 be the constants in (2.85). Next, we are
going to prove (2.82) by induction on n with suitably chosen constants

a > Cm,ε,Λ, and b <
1

2σ2
. (2.86)

Note that if the estimate (2.82) is valid, it remains true for larger a and smaller b. We first
fix a0, b0 to be such that (2.82) holds (with a = a0, b = b0) when n = 1 for all k ∈ Z. Since
∇mpd1 is finitely supported, the existence of such numbers is obvious. We will define

a ≜ a0 ∨ Cm,ε,Λ,

where Cm,ε,Λ is the constant appearing in (2.85) and the choices of b,Λ will be clear later
on. Now suppose that the estimate (2.82) holds for fixed n and all k ∈ Z. To establish
the induction step, we only need to consider the case when |k|2 > Λ(n + 1) (the other case
is proved in (2.85) with the presumed constraint (2.86) for a, b). By applying ∇m to the
Markov property, we see that

∇mpn+1(k) =
1− ε

2
(∇mpn(k − 1) +∇mpn(k + 1)) + ε∇mpn(k).

According to the induction hypothesis, we have∣∣∇mpn+1(k)
∣∣ ⩽ 1− ε

2

(
a

n(m+1)/2
e−

b(k−1)2

n +
a

n(m+1)/2
e−

b(k+1)2

n

)
+ ε · a

n(m+1)/2
e−

bk2

n

=
a

(n+ 1)(m+1)/2
·
(
1 +

1

n

)m+1
2
(
1− ε

2

(
e−

b(k−1)2

n + e−
b(k+1)2

n

)
+ εe−

bk2

n

)
.

Multiplying both sides above by ebk2/n+1 and performing some elementary manipulations on
the exponential functions, it follows that∣∣∇mpn+1(k)

∣∣ · e bk2

n+1 ⩽
a

(n+ 1)(m+1)/2
· Dn ,

where we have set

Dn =

(
1 +

1

n

)m+1
2

· e−
bk2

n(n+1)

(
(1− ε)e−

b
n cosh

(
2bk

n

)
+ ε

)
. (2.87)

In order to complete the induction step, the crucial point is thus to prove that one can choose
b and Λ so that the factor Dn satisfies

Dn ⩽ 1, for all |k|2 > Λ(n+ 1). (2.88)

We now proceed to prove (2.88).
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Step 4: Bounding Dn. In order to prove (2.88), it is important to note that we are working
with the regime |k|2 > Λ(n + 1). Another basic observation is that ∇mpn+1(k) is only non-
zero when |k| ⩽ Cmn (since the one-step transition probabilities are finitely supported). As
a result, the effective k-region under consideration is

Λ(n+ 1) ⩽ k2 ⩽ C2
mn

2. (2.89)

We also recall the following elementary inequalities to be used later on:(
1 +

1

n

)m+1
2

⩽ 1 +
C ′
m

n
∀n ⩾ 1; e−x ⩽ 1− 1

2
x; coshx ⩽ 1 + x2 ∀x ∈ [0, η], (2.90)

where η is some universal constant. Now we choose b to satisfy

b < b0 ∧
1

2σ2
∧ η

C2
m ∧ 2Cm

∧ 1

16
, (2.91)

where Cm is the constant appearing in (2.89) and a0, b0 are defined after (2.86). Then taking
relations (2.86) and (2.91) into account we know that

bk2

n(n+ 1)
∨ 2b|k|

n
< η, for all |k| ⩽ Cmn.

Therefore, the inequalities in (2.90) imply that

Dn ⩽

(
1 +

1

n

)m+1
2

· e−
bk2

n(n+1) cosh

(
2bk

n

)
⩽

(
1 +

C ′
m

n

)(
1− 1

2

bk2

n(n+ 1)

)(
1 +

4b2k2

n2

)
, (2.92)

whenever k satisfies |k| ⩽ Cmn. To analyze the last expression, we first note that(
1− 1

2

bk2

n(n+ 1)

)(
1 +

4b2k2

n2

)
⩽ 1− b

(
1

2

k2

n(n+ 1)
− 4b

k2

n2

)
. (2.93)

Since b < 1/16, it is elementary to see that

4b
k2

n2
<

1

4

k2

n(n+ 1)
. (2.94)

Plugging (2.94) back to (2.93) and then into (2.92), we end up with

Dn ⩽

(
1 +

C ′
m

n

)(
1− 1

4

bk2

n(n+ 1)

)
. (2.95)

In addition, we have k2 > Λ(n + 1). Therefore we can further bound the right hand side
of (2.95) as

Dn ⩽

(
1 +

C ′
m

n

)(
1− bΛ

4n

)
⩽ 1−

(
bΛ

4
− C ′

m

)
1

n
.

It is now clear that we have

Dn ⩽ 1, as long as
bΛ

4
> C ′

m. (2.96)

Consequently, with such choices of b,Λ we conclude that our claim (2.88) holds true for n+1
if we assume that it holds for n ⩾ 1.
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Step 4: Conclusion. The bound (2.88) we have just proved allows to complete the induction
step for (2.80). To summarize the above procedure, we highlight the following facts:
(i) We first choose a0, b0 to obtain the initial step n = 1. Next, we choose b to satisfy (2.91).
Then we choose Λ to satisfy (2.96). Finally, we choose a = a0 ∨ Cm,ε,Λ.
(ii) With the above constants fixed, for k2 ⩽ Λ(n+1) our desired inequality (2.80) is ensured
by (2.84).
(iii) For k2 > Λ(n+ 1), our induction procedure yields (2.80).
The proof of the proposition is thus complete. □

Remark 2.27. Proposition 2.26 and Theorem 2.25 of course hold for other type of discrete
derivatives (e.g. forward differences) for all m ∈ N. Here we have chosen a formulation that
is directly applicable to our situation.

3. Brownian motion in Brownian environment

In this section, we recall some basic facts about the continuous analogue of the random
walk Xd given by Definition (2.4). This classical object is called Brox diffusion (or Brownian
motion with Brownian potential), denoted here by Xc (in the sequel, the superscript c stands
for continuous time parameter). We will recall some important definitions concerning Xc

in Section 3.1. Then we will introduce a martingale problem related to Xc in Section 3.2.
Eventually we introduce some rough paths metric which allows to get a pathwise meaning
to the martingale problem in Section 3.3. Throughout this section we will use the following
notation.

Notation 3.1. For a smooth enough function f : R → R, we set

∇cf ≡ ∂xf, and ∆cf ≡ ∂2xxf.

3.1. Definition of the Brox diffusion. Let W be a one-dimensional, two-sided Brownian
motion defined on a probability space (Ω,G,P) with suitable variance τ 2 (the exact value of
τ 2 is specified by (5.8) below). The process Xc can be seen as the solution to the following
formal stochastic differential equation:

dXc
t = −1

2
Ẇ (Xc

t ) dt+ dBt, (3.1)

where B is a one-dimensional standard Brownian motion independent of W . To be consistent
with the discrete Definition 2.4, we will assume that B is defined on a probability space
(Ω̂,F ,P) which is independent of (Ω,G,P). For our later purpose of comparison with the
discrete case, throughout the rest we always assume that B has variance σ2 ≜ 1 − ε (i.e.
with generator σ2

2
∆c ≡ σ2

2
∂2xx), where ε is the parameter introduced in Definition 2.1.

Since the drift Ẇ in (3.1) is a distribution, this equation does not admit a strong solution.
Therefore a more standard way to introduce the process Xc is to define it as a Feller diffusion
with the following generator:

Lcf(x) = σ2

2
eW (x)/σ2

∂x

(
e−W (x)/σ2

∂xf
)
(x) =

σ2

2
∆cf(x)− 1

2
Ẇ (x)∇cf(x), (3.2)
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where we observe that the second expression is still formal. Also observe that Xc can be
seen as a Markov process whose Dirichlet form on L2(R, µ), with µ(dx) = e−W (x)/σ2

dx, is
given by

Ec(f) = σ2

∫
R
e−W (x)/σ2 |∂xf(x)|2 dx, (3.3)

and we notice that expressions like (3.3) now make sense even if W is not differentiable.
The definition of Xc as a Markov process is a well established fact. Below we summarize

some classical results in this direction, which can be found e.g in [13] (also see references
therein).

Proposition 3.2. Let W be a one-dimensional two-sided Brownian motion defined on a
probability space (Ω,G,P). We consider the operator Lc defined by (3.2). Then we have:

(i) The domain of Lc is dense in the space C0(R) of continuous functions vanishing at
infinity.
(ii) On a probability space (Ω̂,F ,P), one can construct a Markov process Xc whose generator
is given by Lc.

While Proposition 3.2 is certainly a substantial progress in the understanding of equa-
tion (3.1), its main shortcoming is that it yields a very weak notion of solution. A consider-
able amount of effort has been devoted in the recent past to a more pathwise definition of Xc.
The first important contribution in this direction is [16], which hinges on the Itô-McKean
representation (see [6, 30]) of Xc, as well as a thorough analysis of local times. The second
main work on pathwise interpretations of (3.1) can be found in [9]. It relies on a pathwise
interpretation of the martingale problem related to (3.1) thanks to rough paths techniques.
In the current contribution we will mostly stick to the setting of [9], since it might be easier
to generalize to higher dimensional contexts. As in the introduction, one should also mention
the articles [3, 7], which show that equations like (3.1) admit a strong solution even in cases
where the drift Ẇ is a distribution. However [3, 7] fall short of handling the case of a drift
Ẇ ∈ C−1/2−ε like a white noise on R.

In conclusion, our interpretation of (3.1) will rely on the martingale problem and related
pathwise rough PDEs developed in [9]. We now proceed to give a heuristic derivation of the
martingale problem framework.

3.2. Heuristics about the PDE problem related to Brox diffusion. In order to
understand the nature of the family of mild PDEs related to equation (3.1), let us first
consider the following smoothened version of the white noise Ẇ defined for η > 0:

Ẇ η = Ẇ ∗ pη, (3.4)

where pt denotes the continuous heat kernel in R, defined as in (2.66) by

pt(x) =
1√

2πσ2t
e−

x2

2σ2t . (3.5)

Also denote by Pt the heat semigroup associated to the generator σ2

2
∆c ≡ σ2

2
∂2xx. In order to

alleviate notation, we will still write Lc for the operator defined by (3.2) with Ẇ replaced
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by Ẇ η. Namely we set

Lcf(x) = Lc,ηf(x) = σ2

2
∆cf(x)− 1

2
Ẇ η(x)∇cf(x), (3.6)

where we recall that we have set ∇cf ≡ ∂xf .
The martingale problem for equation (3.1) relies on a family of PDEs. Namely for a

generic function g ∈ C(R+ × R), we consider the solution f of the following equation:

∂tft(x)− Lcxft(x) = gt(x), t ∈ [0, τ ], x ∈ R. (3.7)

Since Ẇ η in (3.4) is smooth, equation (3.7) can be solved in a strong sense. However, in order
to take limits as η → 0, we will first write (3.7) in a mild form which echoes Proposition 2.23.
This is the content of the following proposition.

Proposition 3.3. Fix η > 0 and recall that Ẇ η is defined by (3.4). Then if g ∈ C(R+×R),
the mild form of equation (3.7) can be written as

ft(x) = Ptf0(x) +

∫ t

0

∫
R
pt−s(x− y)gs(y)dyds+

∫ t

0

∫
R
pt−s(x− y)Ẇ η(y)∇cfs(y)dyds. (3.8)

Furthermore, an alternative way to write equation (3.8) is

ft(x) = Ptf0(x) +

∫ t

0

ds

∫
R
pt−s(x− y)gs(y) dy

− 1

2

∫ t

0

ds

∫
R
dy ∂xpt−s(x− y)

∫ y

a

∂xfs(z)dW
η(z), (3.9)

where a is an arbitrary real number. In addition, an equation is also available for the deriv-
ative of ft with respect to the space variable:

∂xft(x) = ∂xPtf0(x) +

∫ t

0

∫
R
∂xpt−s(x− y)gs(y)dyds

− 1

2

∫ t

0

∫
R
∂2xxpt−s(x− y)

(∫ y

a

∂zfs(z)dW
η(z)

)
dyds. (3.10)

Proof. We proceed as in the proof of Proposition 2.23. Namely start with the simple PDE

∂tF =
σ2

2
∆cF + g, F0 = f0,

whose solution can be written as

Ft(x) = Ptf0(x) +

∫ t

0

∫
R
pt−s(x− y)gs(y)dyds. (3.11)

Also set J ≜ F − f , where f solves (3.7). Then J satisfies J0 = 0 and

∂tJ = ∂tF − ∂tf =
σ2

2
∆cF + g − σ2

2
∆cf − 1

2
Ẇ η∇cft − g =

σ2

2
∆cJ − 1

2
Ẇ η∇cft.

Therefore the function J can be written in mild form as

Jt(x) = −1

2

∫ t

0

∫
Rn

pt−s(x− y)Ẇ η(y)∇cfs(y) dyds. (3.12)
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Substracting (3.12) from (3.11), it follows that f = F − J satisfies equation (3.9).
As for equation (2.63), we go from (3.8) to (3.9) thanks to an integration by parts proce-

dure. More specifically, due to the vanishing properties of the heat kernel at infinity one can
write∫

R
pt−s(x− y)Ẇ η(y)∇cfs(y)dy = −

∫
R
pt−s(x− y)d

(∫ y

a

∂zfs(z)dW
η(z)

)
= −

∫
R
∂xpt−s(x− y)

(∫ y

a

∂zfs(z)dW
η(z)

)
dy. (3.13)

Plugging this relation into (3.8), our claim (3.9) is easily proved.
Our last argument is as follows: exactly as in the proof of Proposition 2.23, relation (3.10)

is obtained from (3.9) by differentiating with respect to x on both sides of the relation. This
finishes our proof. □

Remark 3.4. As mentioned earlier, Proposition 3.3 is stated for a regularized version of the
noise Ẇ . The pathwise interpretation of the martingale problem related to equation (3.1)
can then be reduced to a limiting procedure in equation (3.10). We give some hints about
this procedure in the current section, the technical details being deferred to Section 4.

At the heart of the approach in [9] is the fact that one can solve equation (3.7), or better
said equation (3.10), in a pathwise way. As mentioned in Remark 3.4, this is achieved by
taking limits in equation (3.13). We summarize this result in the following theorem, which
is stated here quite informally.

Theorem 3.5. Let f0, g be two given C2
b -functions, and consider an arbitrary time horizon

T > 0. Then there exists a unique function f in a proper space of controlled process with
respect to W , satisfying the following equation in the rough paths sense on [0, T ]× R:

∂xft(x) =

∫
R
∂xpt(x− y)f0(y)dy +

∫ t

0

∫
R
∂xpt−s(x− y)gs(y)dyds

− 1

2

∫ t

0

∫
R
∂2xxpt−s(x− y)

(∫ y

x

∂zfs(z)dW (z)

)
dyds, (3.14)

Our aim in this section is to recall the main setting allowing to properly state and prove
Theorem 3.5. Before getting into the computational details, let us recall that this theorem
has to be seen as the main building block in order to set up the martingale problem for
equation (3.1). Namely our ultimate goal is to get the result below.

Theorem 3.6. Let f0, g be two given C2
b -functions, and consider an arbitrary time horizon

T > 0. Let f be the unique solution to equation (3.14). Then there exists a probability PW
and a canonical process Xc on a filtered space (Ω̂, (Ft)t∈[0,T ]) such that under PW the process
M =M f is a martingale, where

Mt = ft(X
c
t )− f0(X

c
0)−

∫ t

0

(Lcxfs(Xc
s)− ∂tfs(X

c
s)) ds. (3.15)
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In addition, there exists a Brownian motion B defined on (Ω̂, (Ft)t∈[0,T ]) such that the mar-
tingale M admits the representation

Mt =

∫ t

0

∂xfs(X
c
s) dBs. (3.16)

Section 3.3 below is devoted to specify the setting under which we will achieve Theorem 3.5
and Theorem 3.6.

3.3. The rough path structure for the fixed point problem. In order to get a better
grasp on the rough path setting employed below, let us first vaguely summarize the main
philosophy invoked in [9] in order to get Theorem 3.5:

(i) We think of ∂xft(x) in (3.14) as the unknown object, denoted as vt(x). For each fixed t,
the function x 7→ vt(x) is regarded as a rough path controlled by the Brownian motion W.
Therefore, the integral

∫ y
x
vs(z)dW (z) is well-defined in the rough path sense. Notice that

the rough paths point of view is needed here. This is due to the fact that W is a double sided
Brownian motion, and therefore z 7→ vs(z) cannot be thought of as an adapted process.
(ii) We introduce an essential transformation

M : v 7→ (Mv)t(x) ≜
∫ t

0

∫
R
∂2xxpt−s(x− y)

(∫ y

x

vs(z)dW (z)

)
dyds. (3.17)

This is a transformation on a suitable space of controlled rough paths. Equation (3.14) can
thus be written as v = Mv. Namely v is a fixed point for the mapping M.
(iii) In order to solve the fixed point problem, we must expect that M is a contraction. The
major technical challenge here is to define the rough path metric in a delicate way, so that
the transformation M is indeed a contraction. This is a highly non-trivial point, as there is
no a priori evidence about why M needs to be a contraction at all (it is not surprising that
M is a bounded linear transformation though).

Notice that in the setting of [9], an auxiliary component Zt(x) is introduced to form a
two-dimensional rough path (Wt(x), Zt(x)). This is needed due to the time-inhomogeneity of
the diffusion equation therein. However, the generator in our situation is time-homogeneous.
This largely simplifies the rough path viewpoint. In particular, it allows us to treat W as
a one-dimensional rough path with the obvious lifting, and the analysis is also simplified
accordingly. This is why we have included a self contained version of the computations in
Section 4. We now introduce the rough path setting which will be used in order to solve
equation (3.14).

3.3.1. Metric on the Brownian rough path W . Our regularities will be quantified in terms of
two parameters 1/3 < β < α < 1/2. The parameter α will be the Hölder-exponent for W,
while β will be used for the Hölder-exponent of the solution path v.

Recall that x 7→ W (x) is a two-sided Brownian motion. On each compact interval [−a, a],
it can be viewed as a one-dimensional α-Hölder rough path in the obvious way, that is
W = (W 1,W 2) with

W 1(x, y) = W (y)−W (x), and W 2(x, y) =
1

2
(W (y)−W (x))2 . (3.18)
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It is important for our purposes to consider W on the entire real line. Thus we need to
introduce a suitable metric on W to take into account its growth at infinity.

Lemma 3.7. Let W 1 be defined by (3.18) and recall that α ∈ (1/3, 1/2). For each a ⩾ 1,
we define a random variable Ha by

Ha ≜ ∥W 1∥[−a,a]α ≜ sup
−a⩽x ̸=y⩽a

|W 1(x, y)|
|y − x|α

. (3.19)

Then for any χ > 1/2− α, we have supa⩾1
Ha

aχ
<∞ almost surely.

Proof. The Brownian scaling property shows that Ha

aχ
law
= 1

aχ−(1/2−α) ·H1. As a result, we have
∞∑
n=1

P
(
Hn+1

nχ
> ε

)
=

∞∑
n=1

P
(
H1 > ε(n+ 1)χ−(1/2−α) ·

(
n

n+ 1

)χ)
.

The series is clearly convergent since H1 has Gaussian tail (according to Fernique’s lemma).
Therefore a standard application of Borel-Cantelli shows that Hn+1

nχ → 0 almost surely, further
implying that

sup
a⩾1

Ha

aχ
⩽ sup

n⩾1

Hn+1

nχ
<∞ a.s.

This finishes our proof. □

In view of Lemma 3.7, we will first label our assumptions on α, β and χ:

1/3 < β < α < 1/2, and
1

2
− α < χ <

β

2
(3.20)

We let the reader check that the hypothesis on χ in (3.20) can be met whenever 1/3 < α <
1/2. Next, given α, β and χ satisfying (3.20), we define a random variable κα,χ(W) by

κα,χ(W) ≜ sup
a⩾1

(
∥W 1∥[−a,a]α

aχ
+

∥W 2∥[−a,a]2α

a2χ

)
, (3.21)

where the norm ∥W 2∥[−a,a]2α is defined similarly to (3.19). The quantity κα,χ(W) is finite
almost surely, as seen from Lemma 3.7.

3.3.2. The solution space and the corresponding rough path metric. The definition of the
solution space for equation (3.17) and the corresponding metric is much more involved. This
is largely due to the need of obtaining a contraction property for the transformation M
defined by (3.17).

We shall identify a Banach space B where the solution path v for the fixed point problem
given by (3.14) or (3.17) lives. Let us first describe what the object v looks like. Recall that,
in the fixed point problem, we want to think of the integral

∫ y
x
vt(z)dW (z) as a rough path

integral. This requires viewing z 7→ vt(z) (for each fixed t) as a rough path controlled by W
(similar to [14, Definition 1]). Therefore, the object vt(·) must also come with a Gubinelli
derivative path ∂Wvt(·). In other words, the a priori shape of the object v should be given
by a pair

V = (v, ∂Wv), (3.22)
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where
v : [0, T ]× R → R, and ∂Wv : [0, T ]× R → R.

To make sense of the rough integral, we require that, for each fixed t ∈ [0, T ], the path

z 7→ Vt(z) = (vt(z), ∂Wvt(z))

is a β-Hölder path controlled by W. Namely, both vt(·) and ∂Wvt(·) are β-Hölder continuous
on compact intervals, and the remainder

RVt(x, y) ≜ vt(y)− vt(x)− ∂Wvt(x) · (W (y)−W (x)) (3.23)

has 2β-Hölder regularity in the sense that for each a ⩾ 1 we have

∥RVt∥[−a,a]2β ≜ sup
−a⩽x ̸=y⩽a

|RVt(x, y)|
|y − x|2β

<∞. (3.24)

Our next task is to define a rough path metric on V quantitatively. As mentioned above,
the main effort here is to tune this metric in a careful way so that we end up with a
contraction for the transformation M described by (3.17). We first introduce the following
general notation. For a given function f : [0, T ]× R → R, we define:

JfK[0,t]×[−a,a]
β/2,β ≜ ∥f∥[0,t]×[−a,a]

∞ + a−β/2∥f∥[0,t]×[−a,a]
β/2,β , (3.25)

where

∥f∥[0,t]×[−a,a]
β/2,β ≜ sup

(s,x) ̸=(s′,x′)∈[0,t]×[−a,a]

|fs′(x′)− fs(x)|
|s′ − s|β/2 + |x′ − x|β

.

We now define some weight functions in order to take into account the fact that we are
considering controlled processes on the real line R.

Definition 3.8. Recall that α, β, χ satisfy relation (3.20). Consider another set of parame-
ters λ, θ > 1. Then for a ⩾ 1 and t ⩾ 0 we set

Eθ,λ(a, t) ≜ eλt+θa+θat, and Q(a, t) := aχ ·
(
aβ/2 + t−β/2

)
, (3.26)

with the convention Q(a, t)−1 ≜ 0 if t = 0.

With Definition 3.8 in hand, we can now introduce the proper notion of controlled processes
we wish to consider in this article. Namely the space Bθ,λ below will be the underlying space
on which the fixed point problem (3.17) is solved.

Definition 3.9. Let the notation of Definition 3.8 prevail, and consider a controlled process
V = (v, ∂Wv) such that (3.24) holds true. We introduce a new parameter γ ≜ α−β

4
> 0.

Then we define the norm of V in the following way:

Θθ,λ(V) ≜ sup
t∈[0,T ],a⩾1

Eθ,λ(a, t)−1

×
(
JvK[0,t]×[−a,a]

β/2,β + λ−γJ∂WvK
[0,t]×[−a,a]
β/2,β + λ−γQ(a, t)−1∥RVt∥[−a,a]2β

)
. (3.27)

We denote by Bθ,λ the space of those V ’s such that Θθ,λ(V) < ∞. It follows that Bθ,λ is a
Banach space under the norm Θθ,λ.
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Remark 3.10. Notice that the choice γ = α−β
4

in Definition 3.9 might seem obscure at this
point. The reason for this will be made clear in the following sections. Also observe that the
norm Θθ,λ is decreasing in λ. As a result, we have Bθ,λ ⊆ Bθ,λ′ if λ < λ′.

Before getting into any technical estimates, it would be helpful to point out why the norm
Θθ,λ is designed in such a way. Unfortunately the explanation can only be vague at this
stage.

(i) The weight eθa in Eθ,λ(a, t) allows the solution to grow at most exponentially in space at
infinity.
(ii) The weights a−β/2 in (3.25) and the term aχ+β/2 in Q(a, t) are used to absorb the polyno-
mial factors in a which come out when estimating the transformation MV . The appearance
of polynomial factors is not surprising due to the polynomial growth of ∥W∥[−a,a]α as a→ ∞.
(iii) The weights eλt+θat and λ−γ are used to ensure that M is a contraction. As we will see,
when estimating the norm of the transformation M, a negative power of λ comes out due
to the introduction of these weights. As a result, if we make the a priori choice of λ to be
large enough, M becomes a contraction. This is the most magical part of the analysis.
(iv) The term t−β/2 in Q(a, t) accounts for the singularity of the heat kernel at the origin.
Such singularity will appear naturally when estimating a remainder term in MV . This is
also related to our one-dimensional rough path viewpoint.

3.3.3. The transformation M. Having introduced the Banach space (Bθ,λ,Θθ,λ(·)), we will
now define the key transformation M as a rough path in Bθ,λ. Namely given V = (v, ∂Wv),
we define

MV ≜ [(t, x) 7→ ((MV)t(x), ∂W (MV)t(x))], (3.28)
where MV is given by (3.17). As far as ∂W (MV) is concerned, we will see in Section 4.3.4
that for (t, x) ∈ [0, T ]× R we have

∂W (MV)t(x) ≜ − 2

σ2
vt(x), (3.29)

where we recall that σ2 is introduced in Notation 2.3. Furthermore, in view of the formal
equation (3.14), it is natural to consider the following transformation on (Bθ,λ,Θθ,λ(·))

M̂ : V 7→ M̂V ≜ ψ1 + ψ2 +MV , (3.30)

where ψ1, ψ2 are functions respectively defined by

ψ1
t (x) ≜

∫
R
∂xpt(x− y)f0(y)dy, and ψ2

t (x) ≜
∫ t

0

∫
R
∂xpt−s(x− y)gs(y)dyds. (3.31)

Our goal in Section 4 will be to show that M̂ admits a unique fixed point in the Banach
space Bθ,λ. More precisely, this is the content of the following result.

Theorem 3.11. Let T be a finite time horizon and consider α, β, χ, θ as in Definitions 3.8
and 3.9. We also consider the quantity κα,χ(W) introduced in (3.21). Recall that the trans-
formation M̂ is defined by (3.30). Then there exists Λ = Λα,β,χ,θ,T,κ > 0, such that for any
λ > Λ and f0, g ∈ C2

b , we have:
(i) The functions ψ1, ψ2 ∈ Bθ,λ defined by (3.31) are elements of Bθ,λ.
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(ii) There exists a unique fixed point for M̂, that is a unique element V of the space Bθ,λ
satisfying

V = ψ1 + ψ2 +MV .

Otherwise stated one can solve equation (3.7) for η = 0, under its mild form (3.14). The
unique solution sits in the space Bθ,λ.
(iii) The controlled process V satisfies

Θθ,λ(V) ⩽ c,

for a constant c depending on f0 and g only.

To put Theorem 3.11 into perspective, let us mention again that this result allows to solve
equation (3.7) in a pathwise sense for all continuous functions g. Hence there is a unique
solution to the martingale problem related to equation (3.1), that is Theorem 3.5 holds true.
Going from Theorem 3.11 to Theorem 3.5 is a matter of standard considerations, for which
we refer e.g. to [18, 31]. Let us mention that the martingale M =M f in (3.16) can now be
written as

Mt = ft(X
c
t )− f0(X

c
0)−

∫ t

0

gs(X
c
s)ds,

where f is the solution to the following rough PDE on [0, τ ]× R:

ft(x) = Pτ−tgτ (x) +

∫ τ

t

∫
R
ps−t(x− y)∂xfs(y)W (dy) ds. (3.32)

Notice that (3.32) is a backward version of the mild equation (3.8), which can be solved
exactly in the same way. In our paper we have chosen to deal with the forward equation (3.8)
for notational convenience. Let us also mention that with Theorem 3.5 in hand, the existence-
uniqueness of a weak solution to equation (3.1) is again a matter of standard arguments. We
summarize this in the following theorem.

Theorem 3.12. Fix a realization of the process W in (Ω,G,P). Then there exists a proba-
bility PW on the canonical space (C(R+),B(C(R+))) and a Brownian motion B defined on
that canonical space, such that (X,B) satisfies the following integral form of equation (3.1):

Xc
t = −1

2

∫ t

0

Ẇ (Xc
s)ds+Bt, for all t ⩾ 0.

We close this section by labeling some notation which will prevail for our computations
below.

Notation 3.13. We use Csubscript to denote a constant depending only on the parameters
specified in the subscript but nothing else. We also use C to denote a constant depending
only on α, β, χ, θ, T, ε but nothing else. Careful inspection on the analysis will reveal that the
dependence of C on θ, T is at most eθ2(1+T )3 . The value of these constants can change from
line to line. We also use Pu(w) to denote universal polynomials of |w| which only depend on
α, β, χ and T (the dependence on T only appears in the coefficients and is polynomial).
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4. The rough path formulation of the martingale problem

As mentioned in Section 3, Theorem 3.11 is the key to establish existence and unique-
ness for the martingale problem related to equation (3.1). Arguably, our Theorem 3.11 is
contained in [9] Theorem 5. However we have decided to include a detailed proof of the
main estimates here for two reasons: first our context where W only depends on the space
variable lead to simpler considerations than in [9]. In addition, the bounds presented in this
section will play a prominent role in our analysis of the convergence in Section 6. We will
thus handle the rough path type estimates for Mv in Sections 4.1-4.2-4.3, and complete the
proof of Theorem 3.11 in Sections 4.4-4.5.

4.1. Rough integral estimates. As mentionned before, the integral
∫ y
x
vs(z)dW (z) in (3.17)

is defined in the rough paths sense. With respect to the usual rough paths setting of [14],
those integrals in R have to involve weighted norms in space. In the current section we de-
velop some basic tools for integrals of processes in spaces of the form Bθ,λ (see Definition 3.9).
Let us start with a bound on those integrals, depending on an interval [−a, a] ⊂ R.

Proposition 4.1. Let W = (W 1,W 2) be the one-dimensional rough path given by (3.18).
We consider α, β satisfying (3.20) and a controlled path x 7→ V(x) with V(x) = (v(x), ∂Wv(x))
as introduced in (3.22)-(3.23). Then for any a ⩾ 1 and x, y ∈ [−a, a] the integral

∫ y
x
v(z)dW (z)

is well-defined, and we have∣∣∣ ∫ y

x

v(z)dW (z)− v(x)W 1(x, y)− ∂Wv(x)W
2(x, y)

∣∣∣
⩽ Cβ ·

(
∥∂Wv∥[−a,a]β · ∥W 2∥[−a,a]2α · |y − x|2α+β + ∥RV∥[−a,a]2β · ∥W∥[−a,a]α · |y − x|α+2β

)
, (4.1)

where the Hölder norms above are understood as in (3.19).

Proof. This is a mere elaboration of [14, Theorem 1], whose proof is omitted for sake of
conciseness. □

Notice that we have stated Proposition 4.1 for a usual controlled process, since we are
only using the function x 7→ V(x) in our estimate. Therefore here v is just considered as one
single rough path rather than a family of rough paths parametrized by time. However, in
the sequel we shall need a corollary stated for processes in Bθ,λ. This is summarized in the
lemma below.

Lemma 4.2. Consider α, β, χ such that (3.20) is fulfilled. Let V = [(t, x) 7→ Vt(x) =
(vt(x), ∂Wvt(x))] be an element in Bθ,λ, as given in Definition 3.9. To simplify notation, let
us set

κ ≜ κα,χ(W), Θ ≜ Θθ,λ(V), E ≜ Eθ,λ(a, t), (4.2)
and

D(a, t, z) ≜ a2χ|z|2α + a2χ+β/2|z|2α+β + a2χ(aβ/2 + t−β/2)|z|α+2β. (4.3)
Then for any t ∈ (0, T ], a ⩾ 1 and x, y ∈ [−a, a], we have∣∣∣ ∫ y

x

vt(z)dW (z)− vt(x)W
1(x, y)

∣∣∣ ⩽ Cβ κΘE λ
γ D(a, t, y − x) (4.4)
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and ∣∣∣ ∫ y

x

vt(z)dW (z)
∣∣∣ ⩽ Cβ κΘE λ

γ (aχ|y − x|α +D(a, t, y − x)) . (4.5)

Proof. In order to get the first estimate we resort to relation (4.1), which yields∣∣∣ ∫ y

x

vt(z)dW (z)− vt(x)W
1(x, y)

∣∣∣ ⩽ ∣∣∣∂Wvt(x)∣∣∣ · ∣∣W 2(x, y)
∣∣

+ Cβ ·
(
∥∂Wvt∥[−a,a]β · ∥W 2∥[−a,a]2α · |y − x|2α+β + ∥RVt∥[−a,a]2β · ∥W∥[−a,a]α · |y − x|α+2β

)
.

Next we bound
∣∣∂Wvt(x)∣∣ and

∣∣W 2(x, y)
∣∣ above thanks to their Hölder and supremum norms.

We get∣∣∣ ∫ y

x

vt(z)dW (z)− vt(x)W
1(x, y)

∣∣∣ ⩽ ∥∂Wv∥[0,t]×[−a,a]
∞ · ∥W 2∥[−a,a]2α · |y − x|2α

+ Cβ ·
(
∥∂Wv∥[0,t]×[−a,a]

β/2,β · ∥W 2∥[−a,a]2α · |y − x|2α+β + ∥RVt∥[−a,a]2β · ∥W∥[−a,a]α · |y − x|α+2β
)
.

We now use the definition (3.21) of κα,χ(W) as well as Definition 3.9 in order to obtain∣∣∣ ∫ y

x

vt(z)dW (z)− vt(x)W
1(x, y)

∣∣∣
⩽ Cβ · κ ·ΘE · λγ ·

(
a2χ|y − x|2α + a2χ+β/2|y − x|2α+β + a2χ(aβ/2 + t−β/2)|y − x|α+2β

)
,

(4.6)

from which our estimate (4.4) is easily achieved. Our second claim (4.5) is also deduced from
(4.4) plus the trivial bound

|vt(x)W 1(x, y)| ⩽ ∥v∥[0,t]×[−a,a]
∞ · aχ · κ · |y − x|α ⩽ κΘE · aχ|y − x|α.

The proof is now complete. □

4.2. A key estimate for heat kernel convolutions with rough integrals. In view
of the expression (3.17) of (MV)t(x), an essential ingredient in the analysis of MV is to
estimate heat kernel convolutions with rough path integrals carefully. This is summarized
in the following key lemma.

Lemma 4.3. Consider α, β, χ such that (3.20) is fulfilled. Let V = (v, ∂Wv) be a controlled
path in the space Bθ,λ introduced in Definition 3.9. Recall that the heat kernel on R is given
by (3.5) and the constants κ,Θ, E are spelled out in (4.2). Then the following two estimates
hold true:

(i) Let 0 ⩽ γ1 ⩽ γ2 ⩽ β/2 and k ⩾ 1. For any a ⩾ 1, x ∈ [−a, a] and τ1 ⩽ τ2 ∈ (0, T ], we
have∫

R

∫ τ1

0

|∂kx···xp1(w)|
s1+γ1

∣∣∣∣∣
∫ x+

√
sw

x

vτ2−s(z)dW (z)

∣∣∣∣∣ dwds ⩽ C · κΘE · λγ−
α−β
2 aγ2 · τ γ2−γ11 , (4.7)
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(ii) Let 0 ⩽ σ1 ⩽ β and k ⩾ 1. For any a ⩾ 1, x ∈ [−a, a] and τ1 ⩽ τ2 ∈ (0, T ], we have∫
R

∫ τ1

0

|∂kx···xp1(w)|
s1+σ1

∣∣∣∣∣
∫ x+

√
sw

x

(vτ2−s(z)− vτ2−s(x))dW (z)

∣∣∣∣∣ dwds
⩽ C · κΘE · λγ−

α−β
4 aχ

(
aβ/2 + τ

−β/2
2

)
· τβ−σ11 . (4.8)

Remark 4.4. The factors λγ−
α−β
2 and λγ−

α−β
4 appearing in the above two estimates are crucial.

In fact, we will choose γ = α−β
4

in the a priori definition of γ. This implies that the factor
λγ−

α−β
2 = λ−

α−β
4 is decaying. This point is critical for obtaining the contraction property of

MV .

Proof of Lemma 4.3. We will divide this proof into several steps.
Step 1: Estimate for the rough integral. Set

Ax,s,w,τ2 =

∫ x+
√
sw

x

vτ2−s(z)dW (z). (4.9)

Then according to (4.5), for any x ∈ [−a, a] we can upper bound |Ax,s,w,τ2| by

Cβ · κΘ · E(a+
√
s|w|, τ2 − s) · λγ ·

(
(a+

√
s|w|)χsα/2|w|α + (a+

√
s|w|)2χsα|w|2α

+(a+
√
s|w|)2χ+β/2sα+β/2|w|2α+β + (a+

√
s|w|)2χ+β/2sα/2+β|w|α+2β

+(a+
√
s|w|)2χ(τ2 − s)−β/2sα/2+β|w|α+2β

)
.

Hence recalling that we write Pu(w) for any polynomial in w and that our time horizon is
T , we get that |Ax,s,w,τ2| can be upper bounded as follows:

CβκΘλ
γ · Pu(w) · E(a+

√
s|w|, τ2 − s) ·

(
(a+

√
T |w|)χsα/2 + (a+

√
T |w|)2χsα (4.10)

+(a+
√
T |w|)2χ+β/2sα+β/2 + (a+

√
T |w|)2χ+β/2sα/2+β + (a+

√
T |w|)2χ(τ2 − s)−β/2sα/2+β

)
.

In addition, still invoking the fact that our time horizon is T , we can write

E(a+
√
s|w|, τ2 − s) = eλ(τ2−s)+θ(a+

√
s|w|)+θ(a+

√
s|w|)(τ2−s) (4.11)

⩽ E(a, τ2) · eθ(1+T )
√
T |w| · e−(λ+θ(a+

√
T |w|))s. (4.12)

Consider now γ1 ⩽ γ2 ⩽ β/2 as in the statement of our current lemma. Setting ρ ≜ a+
√
T |w|

and plugging (4.12) in (4.10), we obtain that

s−(1+γ1)
∣∣Ax,s,w,τ2

∣∣ ⩽ CβκΘλ
γPu(w)E(a, τ2)e

θ(1+T )
√
T |w| · e−(λ+θρ)sϕ1(ρ, s), (4.13)

where we define two functions ϕi, i = 1, 2, as follows:

ϕi(ρ, s) =
(
ρχsα/2−1−γi + ρ2χsα−1−γi

+ρ2χ+β/2sα+β/2−1−γi + ρ2χ+β/2sα/2+β−1−γi + ρ2χ(τ2 − s)−β/2sα/2+β−1−γi
)
, (4.14)

and we notice that ϕ2 will be used in (4.17).
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Step 2: Decomposition of a time integral. With a proper estimate for Ax,s,w,τ2 in hand, we
turn to an estimate of the double integral (4.7). To this aim, we first consider the s-integral
and we set

Dτ1(w) =

∫ τ1

0

s−(1+γ1)Ax,s,w,τ2ds. (4.15)

Then taking (4.13) and (4.14) into account we get∣∣Dτ1(w)
∣∣ ⩽ CβκΘλ

γPu(w)E(a, τ2)e
θ(1+T )

√
T |w|

∫ τ1

0

e−(λ+θρ)sϕ1(ρ, s)ds.

We will now gain a small factor τ γ2−γ11 by playing with the fact that γ2 ⩾ γ1. Namely we
easily obtain ∣∣Dτ1(w)

∣∣ ⩽ Cβτ
γ2−γ1
1 κΘλγPu(w)E(a, τ2)e

θ(1+T )
√
T |w|Jτ1 , (4.16)

where we have set

Jτ1 =
∫ τ1

0

e−(λ+θρ)sϕ2(ρ, s)ds, (4.17)

and where we recall that ϕ2 is introduced in (4.14). In addition, we shall decompose the
integral J into J = J 1 + J 2, where we define

J 1
τ1
≜
∫ τ1

0

e−(λ+θρ)s ·
(
ρχsα/2−1−γ2 + ρ2χsα−1−γ2 + ρ2χ+β/2sα+β/2−1−γ2

+ρ2χ+β/2sα/2+β−1−γ2
)
ds

and

J 2
τ1
≜
∫ τ1

0

e−(λ+θρ)sρ2χ(τ2 − s)−β/2sα/2+β−1−γ2ds. (4.18)

The methods in order to estimate J 1 and J 2 are slightly different, and thus those two tasks
will be carried out separately. The main non-trivial effort here is to see that

J i
τ1
⩽ Cα,βρ

γ2 · λ
β−α
2 , for i = 1, 2. (4.19)

This is the critical point where a negative power of λ appears (recall that β < α), which in
turn contributes to the contraction property of the transformation M.

Step 3: Estimation of J 1. By applying a change of variables r = (λ+ θρ)s, we obtain

ρ−γ2J 1
τ1
=

∫ (λ+θρ)τ1

0

e−r
(

ρχ−γ2

(λ+ θρ)α/2−γ2
rα/2−γ2−1 +

ρ2χ−γ2

(λ+ θρ)α−γ2
rα−γ2−1

+
ρ2χ+β/2−γ2

(λ+ θρ)α+β/2−γ2
rα+β/2−γ2−1 +

ρ2χ+β/2−γ2

(λ+ θρ)α/2+β−γ2
rα/2+β−γ2−1

)
dr.

Therefore collecting the terms of the form ρα1/(λ + θ ρ)α2 and computing the integrals∫∞
0
e−rrα3 dr, the reader can easily check that

ρ−γ2J 1
τ1
⩽ Cα,β ·

(
ρχ−γ2

(λ+ θρ)α/2−γ2
+

ρ2χ−γ2

(λ+ θρ)α−γ2
+

ρ2χ+β/2−γ2

(λ+ θρ)α+β/2−γ2
+

ρ2χ+β/2−γ2

(λ+ θρ)α/2+β−γ2

)
.

(4.20)
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Hence to reach the estimate (4.19), we need to show that

ρχ−γ2

(λ+ θρ)α/2−γ2
∨ ρ2χ−γ2

(λ+ θρ)α−γ2
∨ ρ2χ+β/2−γ2

(λ+ θρ)α+β/2−γ2
∨ ρ2χ+β/2−γ2

(λ+ θρ)α/2+β−γ2
⩽ λ

β−α
2 . (4.21)

In order to achieve (4.21), we first observe that the above four quotients all have the form

ρb−γ2

(λ+ θρ)a−γ2
, with 0 < b < a and a > γ2. (4.22)

More precisely, we recall from (3.20) that β < α and χ < 1/2, and we have also assumed
that γ1 ⩽ γ2 ⩽ β/2. Thus it is readily checked that the exponents in (4.21) satisfy (4.22),
by respectively considering the following values for a, b:

(i)

{
b = χ

a = α/2
, (ii)

{
b = 2χ

a = α
, (iii)

{
b = 2χ+ β/2

a = α + β/2
, (iv)

{
b = 2χ+ β/2

a = α/2 + β
(4.23)

With (4.21) in mind, we now claim that for all λ, ρ ⩾ 1 we have:

ρb−γ2

(λ+ θρ)a−γ2
⩽ λb∨γ2−a ∀λ, ρ ⩾ 1. (4.24)

Indeed, if ρ ⩾ λ, we have (recall λ, θ > 1 and b < a)

ρb−γ2

(λ+ θρ)a−γ2
⩽ ρb−a ⩽ λb−a ⩽ λb∨γ2−a.

On the other hand, if 1 ⩽ ρ < λ and b > γ2, we have

ρb−γ2

(λ+ θρ)a−γ2
⩽
ρb−γ2

λa−γ2
⩽ λb−a ⩽ λb∨γ2−a.

Eventually, if 1 ⩽ ρ < λ and b ⩽ γ2, then

ρb−γ2

(λ+ θρ)a−γ2
=

1

ργ2−b(λ+ θρ)a−γ2
⩽ λγ2−a ⩽ λb∨γ2−a.

Therefore, the claim (4.24) follows. The estimate (4.19) for J 1 is then established by re-
porting (4.24) into the cases (i)-(iv) in (4.23). Notice that we have

a− b ∨ γ2 =


(i) α

2
− χ ∨ γ2 ⩾ (α− β)/2

(ii) α− 2χ ∨ γ2 ⩾ α− β

(iii)
(
α + β

2

)
−
(
2χ+ β

2

)
∨ γ2 = α− 2χ ⩾ α− β

(iv)
(
α
2
+ β

)
−
(
2χ+ β

2

)
∨ γ2 = α+β

2
− 2χ

⩾
α− β

2
,

in each of the four cases respectively. This achieves (4.21), and recall that plugging (4.21)
into (4.20) we obtain

ρ−γ2J 1
τ1
⩽ Cα,β λ

β−α
2 , (4.25)

that is relation (4.19) for J 1.
Step 4: Estimation of J 2. We first recall an elementary estimate, which holds true for all
r, c > 0

e−r ⩽ ccr−c. (4.26)
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Observe that (4.26) can be seen from x ⩽ ex for x > 0 and taking x = r/c. Now we recall
that J 2 is defined by (4.18). We use (4.26) in this definition and choose r ≜ (λ+ θρ)s, with
a parameter c > 0 to be specified later on. We end up with

ρ−γ2J 2
τ1
⩽

ccρ2χ−γ2

(λ+ θρ)c

∫ τ1

0

sα/2+β−γ2−c−1(τ2 − s)−β/2ds.

Therefore the elementary change of variable s ≜ τ1u yields

ρ−γ2J 2
τ1
⩽
ccρ2χ−γ2τ

α/2+β−γ2−c
1

(λ+ θρ)c

∫ 1

0

uα/2+β−γ2−c−1(τ2 − τ1u)
−β/2du,

and since we have assumed τ1 ⩽ τ2 we can write (τ2 − τ1u)
−β/2 ⩽ τ

−β/2
1 (1− u)−β/2. We get

ρ−γ2J 2
τ1
⩽
ccρ2χ−γ2τ

α/2+β/2−γ2−c
1

(λ+ θρ)c

∫ 1

0

uα/2+β−γ2−c−1(1− u)−β/2du. (4.27)

We now pick a convenient value for the parameter c above. Indeed, one can choose c =
α
2
+ β

2
− γ2, so that τα/2+β/2−γ2−c1 = 1. With this value of c, we let the reader check that the

exponent α/2 + β − γ2 − c− 1 in the right hand side of (4.27) is larger than −1. It follows
that

ρ−γ2J 2
τ1
⩽ Cα,β ·

ρ2χ−γ2

(λ+ θρ)α/2+β/2−γ2
. (4.28)

Notice that the ratio in (4.28) has the form of (4.22), with b = 2χ and a = (α + β)/2. In
addition, our relation (3.20) on α, β, χ ensures that b < a. Thus according to (4.24), we
obtain that

ρ−γ2J 2
τ1
⩽ Cα,β · λ(2χ)∨γ2−

α+β
2 ⩽ Cα,β · λ

β−α
2 , (4.29)

where we have resorted to the fact that (2χ) ∨ γ2 ⩽ β for the second inequality above.
Therefore, we have established the estimate (4.19) for J 2.

Summarizing our considerations so far, we have proved (4.19) by gathering (4.29) and (4.25).
Therefore recalling that we have set J = J 1 +J 2 and relation (4.16), we get that the term
Dτ1 defined by (4.15) satisfies∣∣Dτ1(w)

∣∣ ⩽ Cα,β · τ γ1−γ21 κΘPu(w)E(a, τ2)e
θ(1+T )

√
T |w| · λγ+

β−α
2 · ργ2 . (4.30)

Step 5: Conclusion. Recall that our aim is to achieve the upper bound (4.7). With (4.9)
and (4.15) in hand, the left hand side of (4.7) can be written as∫

R
|∂kx···xp1(w)| Dτ1(w) dw.

Therefore plugging (4.30) into the above expression, we get that (recall ρ = a+
√
T |w|):∫

R
|∂kx···xp1(w)| Dτ1(w) dw ⩽ Cα,β · κΘE(a, τ2)λγ+

β−α
2 τ γ2−γ11

×
∫
R
|∂kx···xp1(w)| · Pu(w) · eθ(1+T )

√
T |w|(a+

√
T |w|)γ2dw .
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Hence some elementary heat kernel estimates entail∫
R
|∂kx···xp1(w)| Dτ1(w) dw ⩽ Cα,β,k,σe

θ2(1+T )3 · κΘE(a, τ2)λγ+
β−α
2 τ γ2−γ11 · aγ2

= Cα,β,k,θ,T,σ · κΘE(a, τ2) · λγ+
β−α
2 aγ2τ γ2−γ11 . (4.31)

This finishes the proof of (4.7). For sake of conciseness we leave the proof of (4.8) to the
patient reader. It is based on the same kind of arguments as for (4.7), also taking into
account the extra regularity brought in by the increments vτ2−s(z)− vτ2−s(x). □

For our future computations it will be useful to extend the estimate (4.8) to a context with
time increments of v. This is the content of the following lemma.

Lemma 4.5. We assume that the hypothesis of Lemma 4.3 hold true. In particular, we
consider a process v in Bθ,λ and we recall that the parameter γ in Definition 3.9 satisfies
γ = α−β

4
. Then the following bound holds true:∫

R

∫ τ1

0

|∂kx···xp1(w)|
s1+σ1

∣∣∣ ∫ x+
√
sw

x

(vτ2−s(z)− vτ2(x))dW (z)
∣∣∣dwds

⩽ C · κΘE(a, τ2)aχ
(
aβ/2 + τ

−β/2
2

)
· τβ−σ11 . (4.32)

Proof. We decompose the increment vτ2−s(z)− vτ2(x) into

vτ2−s(z)− vτ2(x) = [vτ2−s(z)− vτ2−s(x)] + [vτ2−s(x)− vτ2(x)] .

Then notice that the integral (4.32) corresponding to vτ2−s(z) − vτ2−s(x) has been handled
in (4.8). We will thus focus on the following term:

Ex,τ1,τ2 =
∫
R

∫ τ1

0

|∂kx···xp1(w)|
s1+σ1

∣∣ ∫ x+
√
sw

x

(vτ2−s(x)− vτ2(x))dW (z)
∣∣dwds. (4.33)

In order to bound Ex,τ1,τ2 we observe that the increment vτ2−s(x) − vτ2(x) does not depend
on the variable z. Therefore we have

Ex,τ1,τ2 =
∫
R

∫ τ1

0

|∂kx···xp1(w)|
s1+σ1

|vτ2−s(x)− vτ2(x)| · |W 1(x, x+
√
sw)|dwds . (4.34)

Next we bound the increments of v resorting to the bound on JvKβ/2,β ensured by Defini-
tion 3.9, together with the definition (3.25) of J · Kβ/2,β. This yields∣∣vτ2−s(x)− vτ2(x)

∣∣ ⩽ aβ/2E(a, τ2)Θ · sβ/2, (4.35)

The increments of W can be estimated thanks to the fact that κα,χ(W) (see equation (3.21))
is a finite quantity. We get∣∣W 1(x, x+

√
sw)
∣∣ ⩽ κ · (a+

√
T |w|)χ · sα/2 · |w|α ⩽ Cχ,T · κ · Pu(w) · aχsα/2, (4.36)

where we recall that Pu(w) designates any polynomial in the w variable. Now plugging (4.35)
and (4.36) into (4.34) we obtain

Ex,τ1,τ2 ⩽ C · κaχ+β/2E(a, τ2)Θ ·
∫ τ1

0

s
α+β
2

−1−σ1ds = C · κaχ+β/2E(a, τ2)Θ · τ
α+β
2

−σ1
1 .
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Then we trivially bound τ
α+β
2

1 by Cτβ1 (recall that τ1 will be chosen as a small constant) and
aβ/2 by aβ/2 + t−β/2. We end up with

Ex,τ1,τ2 ⩽ C · κE(a, τ2)Θ · τβ−σ11 aχ
(
aβ/2 + t−β/2

)
,

which means that we have achieved the bound (4.32) for Ex,τ1,τ2 . Our claim (4.32) is thus
obtained thanks to the considerations at the beginning of our proof. □

4.3. Estimating the norm of MV. Recall that our main object of interest is the trans-
formation MV introduced in Section 3.3.3. For convenience recall that this transformation
is defined in (3.28) as

MV ≜ [(t, x) 7→ ((MV)t(x), ∂W (MV)t(x))], (4.37)

where the first term (Mv)t(x) is defined by (3.17) and where the Gubinelli derivative
∂W (MV)t is defined in (3.29). One of our main steps toward the proof of Theorem 3.11
is the following contraction property for the norm Θθ,λ(MV).

Proposition 4.6. Consider a set of parameters α, β, γ, χ, θ, λ satisfying (3.20). Let M be the
map whose definition is recalled in (4.37). Then M is a well-defined linear transformation
on the Banach space Bθ,λ introduced in Definition 3.9. It satisfies the following estimate:

Θθ,λ(MV) ⩽ C · (1 + κα,χ(W)) · λ−
α−β
4 ·Θθ,λ(V), (4.38)

where C is a constant depending only on all the parameters α, β, γ, χ, θ, λ, but not on W
and V. In particular, by choosing λ to be large enough, we can ensure that

Θθ,λ(MV) ⩽ 1

2
Θθ,λ(V). (4.39)

Therefore M is a contraction on Bθ,λ.

Going back to the Definition 3.9 of Bθ,λ and its norm Θθ,λ, the estimate for M can be split
in four main terms (i) a uniform estimate for MV , (ii) an estimate for the time fluctuations
of MV , (iii) a bound on the spatial fluctuations of MV and (iv) a control on the remainder
RMV . We develop these four estimates in the following sections. At this point it is helpful
to recall the following change of variables, which will be extensively used in the sequel and
is valid for s > 0, x, y ∈ R, with y = x+

√
sw, and k ≥ 1:

∂kx···xps(x− y)
∣∣
y=x+

√
sw

= Cσ · s−
k+1
2 ∂kx···xp1(w). (4.40)

Unless otherwise stated, we always shorten our notation as in (4.2) in order to avoid lengthy
expressions.

4.3.1. The uniform estimate for MV. We begin the proof of Proposition 4.6 with the fol-
lowing simple uniform estimate for (MV)t(x).

Lemma 4.7. Under the conditions of Proposition 4.6, consider t ∈ [0, T ] and x ∈ [−a, a].
Then we have ∣∣(MV)t(x)

∣∣ ⩽ C · κΘE(a, t) · λ−
α−β
4 . (4.41)
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Proof. Starting from the expression (3.17) for Mv, writing y = x +
√
sw and invoking

relation (4.40) we get

(MV)t(x) =
∫ t

0

∫
R

∂2xxp1(w)

s

(∫ x+
√
sw

x

vt−s(z)dW (z)

)
dw ds. (4.42)

Our claim (4.41) is thus a direct consequence of Lemma 4.3 (i) with k = 2, γ1 = γ2 = 0 and
τ1 = τ2 = t. □

4.3.2. The time variation estimate for MV. In this section we investigate the time fluctua-
tions of MV , which is another step toward the proof of Proposition 4.6.

Lemma 4.8. We work under the conditions of Proposition 4.6. In particular, recall that
α, β satisfy (3.20). Then for any elements x ∈ [−a, a] and t1, t2 ∈ [0, T ] such that t1 < t2,
we have ∣∣(MV)t2(x)− (MV)t1(x)

∣∣ ⩽ CκΘE(a, t2)a
β/2λ−

α−β
4 |t2 − t1|β/2. (4.43)

Proof. Invoking equation (3.17), it is readily checked that the time increments of MV can
be written as

(MV)t2(x)− (MV)t1(x) =
∫ t2

t1

∫
R
∂2xxpt2−s(x− y)

∫ y

x

vs(z)dW (z)dyds

+

∫ t1

0

∫
R

(
∂2xxpt2−s(x− y)− ∂2xxpt1−s(x− y)

) ∫ y

x

vs(z)dW (z)dyds.

Hence, writing the increment ∂2xxpt2−s(x− y)− ∂2xxpt1−s(x− y) in terms of a time derivative
and owing to the fact that p satisfies ∂tp = σ2

2
∂2xxp, we get a decomposition of the form

(MV)t2(x)− (MV)t1(x) =
σ2

2
T1 + T2, (4.44)

where the terms T1 and T2 are respectively defined by

T1 = Cσ

∫ t1

0

ds

∫
R
dy

∫ t2−s

t1−s
∂4xpu(x− y)du

∫ y

x

vs(z)dW (z)

T2 =

∫ t2

t1

∫
R
∂2xxpt2−s(x− y)

∫ y

x

vs(z)dW (z)dyds, (4.45)

where we write ∂4xp instead of ∂4xxxxp for notational sake. We now estimate T1 and T2

separately.

Estimation of T1: By a change of variables w = (y − x)/
√
u, and owing to relation (4.40)

we can write T1 as

T1 = Cσ

∫
R
∂4xp1(w)dw

∫ t1

0

ds

∫ t2−s

t1−s
u−2du

∫ x+
√
uw

x

vs(z)dW (z). (4.46)

We first look at the triple integral inside the w-integral, that is

T1,x,w,t1,t2 =

∫ t1

0

ds

∫ t2−s

t1−s
u−2du

∫ x+
√
uw

x

vs(z)dW (z). (4.47)
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In order to upper bound T1,x,w,t1,t2 we perform the change of variable u = t1 + r − s so that
we get

T1,x,w,t1,t2 =

∫ t1

0

ds

∫ t2−t1

0

dr

(t1 + r − s)2

∫ x+
√
t1+r−sw

x

vs(z)dW (z).

Then switching the order of integration in r and s and setting ρ = t1 + r − s we obtain

T1,x,w,t1,t2 =

∫ t2−t1

0

dr

∫ t1+r

r

dρ

ρ1+β/2+1−β/2

∫ x+
√
ρw

x

vt1+r−ρ(z)dW (z).

This can be easily bounded as∣∣∣T1,x,w,t1,t2

∣∣ ⩽ ∫ t2−t1

0

rβ/2−1dr

∫ t1+r

0

dρ

ρ1+β/2

∣∣∣∣∫ x+
√
ρw

x

vt1+r−ρ(z)dW (z)

∣∣∣∣ . (4.48)

Therefore, plugging (4.48) into (4.47) and then (4.46), we end up with

T1 ⩽
∫
R

∣∣∂4xp1(w)∣∣dw ∫ t2−t1

0

rβ/2−1dr

∫ t1+r

0

dρ

ρ1+β/2

∣∣∣ ∫ x+
√
ρw

x

vt1+r−ρ(z)dW (z)
∣∣∣

=

∫ t2−t1

0

rβ/2−1dr ·
∫
R

∣∣∂4xp1(w)∣∣dw ∫ t1+r

0

dρ

ρ1+β/2

∣∣∣ ∫ x+
√
ρw

x

vt1+r−ρ(z)dW (z)
∣∣∣.

We can now resort to Lemma 4.3 (i) with γ1 = γ2 = β/2. This yields

T1 ⩽ CκΘE(a, t2)a
β/2λγ+

β−α
2 |t2 − t1|β/2 = CκΘE(a, t2)a

β/2λ−
α−β
4 |t2 − t1|β/2, (4.49)

where in the second identity we have used the fact that γ = α−β
4

.

Estimation of T2: The upper bound for T2 is obtained similarly to T1. Namely starting from
expression (4.45) some elementary change of variables in the space and time variables yield

T2 =

∫ t2−t1

0

∫
R
∂2xxpr(x− y)

∫ y

x

vt2−r(z)dW (z)dydr.

Therefore setting y = x+
√
rw and resorting to (4.40) in order to replace pr by p1, we get

T2 = Cσ

∫ t2−t1

0

dr

r

∫
R
∂2xxp1(w)

∫ x+
√
rw

x

vt2−r(z)dW (z)dw.

The above identity enables the application of (4.7), where we choose γ1 = γ2 = 0. We get

T2 ⩽ CκΘE(a, t2)a
β/2λ−

α−β
4 |t2 − t1|β/2. (4.50)

Hence reporting (4.49) and (4.50) into the decomposition (4.44), the proof of our claim (4.41)
is easily achieved. □

4.3.3. The space variation estimate for MV. This section is devoted to the third ingredi-
ent in our global strategy, namely the upper bound on the β-Hölder norm for the spatial
increments of MV . In order to ease notation, we will often use the convention

f(x, x′) ≡ f(x)− f(x′), (4.51)

valid for any function f of a spatial variable x in R or δZ. This notation will prevail for the
remainder of the article. Our main aim is to prove the lemma below.
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Lemma 4.9. Let the assumptions and notations of Proposition 4.6 prevail. Then for any
t ∈ (0, T ] and x, x′ ∈ [−a, a], we have∣∣(MV)t(x, x′)

∣∣ ⩽ C · κΘE(a, t) · λ−
α−β
4 aβ/2|x′ − x|β. (4.52)

Proof. Before starting our discussion, recall our identity (3.13), for which we had chosen an
arbitrary a ∈ R. Differentiating this relation with respect to x and taking limits as η → 0
in the rough path sense, we get that the integral∫ t

0

∫
R
∂2xxps(x− y)

∫ y

a

vt−s(z)dW (z)dyds (4.53)

does not depend on a. This fact will be used without further mention in the remainder of
the proof.

As an application of (4.53), let t ∈ (0, T ] and x, x′ ∈ [−a, a]. Starting from the expres-
sion (3.17) for MV and owing to the fact that the lower bound x can be chosen arbitrarily
in
∫ y
x
vs(z)dW (z), it is readily checked that

(MV)t(x, x′) =
∫ t

0

∫
R

(
∂2xxps(x

′ − y)− ∂2xxps(x− y)
) ∫ y

x

vt−s(z)dW (z)dyds. (4.54)

We now divide our analysis in two cases according to the respective value of x′ − x and t.
Case (i): |x′ − x|2 ⩽ t. With identity (4.54) in mind, let us split the interval [0, t] into
[0, |x′ − x|] ∪ [|x′ − x|, t] in order to get the following decomposition

(MV)t(x′)− (MV)t(x) = I1(x
′)− I1(x) + I2, (4.55)

where for ξ ∈ R we have set

I1(ξ) =

∫ |x′−x|2

0

∫
R

(
∂2xxps(ξ − y)

∫ y

ξ

vt−s(z)dW (z)

)
dyds, (4.56)

and where the term I2 is given by

I2 =

∫ t

|x′−x|2
ds

∫
R
dy

∫ x′

x

∂3xps(u− y)du

∫ y

x

vt−s(z)dW (z), (4.57)

where we use again ∂3xp instead of ∂3xxxp for notational sake. We proceed to estimate the
term I1(ξ) in (4.56). To this aim we resort to the same type of change of variables as in
Lemma 4.8 and invoke the identity (4.40) once more. We get

|I1(ξ)| ⩽
∫ |x′−x|2

0

ds

s

∫
R

∣∣∂2xxp1(w)∣∣dw
∣∣∣∣∣
∫ ξ+

√
sw

ξ

vt−s(z)dW (z)

∣∣∣∣∣ .
We are thus in position to apply Lemma 4.3 (i) with τ1 = |x′ − x|2, γ2 = β/2 and γ1 = 0.
Also we recall that we have chosen γ = α−β

4
. This implies

|I1(ξ)| ⩽ C · κΘE(a, t) · λ−
α−β
4 aβ/2|x′ − x|β. (4.58)
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Let us turn to an upper bound on the term I2 in (4.57). Switching the order of integration
and thanks to (4.40), one can write

|I2| ⩽
∫ x′

x

du

∫ t

|x′−x|2

ds

s1/2−β/2+1+β/2

∫
R

∣∣∂3xp1(w)∣∣dw
∣∣∣∣∣
∫ u+

√
sw

u

vt−s(z)dW (z)

∣∣∣∣∣
⩽ |x′ − x|β−1

∫ x′

x

du

∫ t

0

ds

s1+β/2

∫
R

∣∣∂3xp1(w)∣∣dw
∣∣∣∣∣
∫ u+

√
sw

u

vt−s(z)dW (z)

∣∣∣∣∣ ,
where we have enlarged the term 1

s1/2−β/2 to |x′−x|β−1 and then enlarged the s-integral over
the region [0, t]. By applying Lemma 4.3 (i) to the inner (s, w, z)-integral with γ1 = γ2 = β/2,
we get

|I2| ⩽ C · κΘE(a, t) · λ−
α−β
4 aβ/2|x′ − x|β. (4.59)

Reporting (4.58) and (4.59) into (4.55) we have∣∣MVt(x, x′)
∣∣ ⩽ C · κΘE(a, t) · λ−

α−β
4 aβ/2|x′ − x|β.

Therefore our claim (4.52) is proved whenever |x′ − x|2 ⩽ t.
Case (ii): |x′−x|2 > t. This case is essentially contained in the above I1(ξ)-estimate. Indeed,
starting directly from (4.54) we can write

MV t(x, x′) = I ′
1(x

′)− I ′
1(x),

where

I ′
1(ξ) ≜

∫ t

0

∫
R
∂2xxps(ξ − y)

∫ y

ξ

vt−s(z)dW (z)dyds, ξ ∈ R.

The only difference between I ′
1(ξ) and I1(ξ) introduced in Case (i) is that the region for the

s-integral becomes [0, t] rather than [0, |x′ − x|2]. By exactly the same argument as before,
the estimate (4.58) becomes

|I ′
1(ξ)| ⩽ C · κΘE(a, t) · λ−

α−β
4 aβ/2tβ/2.

Since |x′ − x|2 > t, it follows that∣∣MV t(x, x′)
∣∣ ⩽ ∣∣I ′

1(x
′)
∣∣+ ∣∣I ′

1(x)
∣∣

⩽ C · κΘE(a, t) · λ−
α−β
4 aβ/2|x′ − x|β.

This achieves (4.52) for |x′ − x|2 > t and finishes our proof. □

4.3.4. The remainder estimate for MV. Recall that the remainder of a controlled process
is introduced in (3.23). Moreover, we defined the Gubinelli derivative of MV as −2v/σ2

in (3.29). Gathering those two relations and recalling notation (4.51), we get that the
remainder of (MV)t is given as

RMV
t (x, x′) = MVt(x, x′) +

2

σ2
vt(x)W

1(x, x′). (4.60)

We will now prove that RMV
t is indeed a 2β-Hölder increment.
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Lemma 4.10. Let α, β, χ, γ, θ, λ be parameters such that (3.20) is fulfilled. Recall that
the functions E and Q are introduced in Definition 3.8, and that the norm Θ is given in
Definition 3.9. Then the remainder RMV defined by (4.60) satisfies∣∣RMV

t (x, x′)
∣∣ ⩽ C · κE(a, t)Θ ·Q(a, t) · |x′ − x|2β, (4.61)

for all t ∈ (0, T ] and x, x′ ∈ [−a, a].

A crucial point for proving Lemma 4.10 is to make use of the decomposition in the following
lemma. This decomposition, together with the estimates developed in Lemma 4.12 and
Lemma 4.13 below, will explain why the Gubinelli derivative of (MV)t should be defined to
be −2vt/σ

2.

Lemma 4.11. As in Lemma 4.10, we consider the remainder RMV given by (4.60). Then
for all t ∈ [0, T ] and x, x′ ∈ [−a, a] we have

RMV
t (x, x′) = R0

t (x, x
′) +

2

σ2
vt(x) (PtW (x′)− PtW (x)) , (4.62)

where the increment R0 is defined by

R0
t (x, x

′) =

∫ t

0

∫
R

(
∂2xxps(x

′ − y)− ∂2xxps(x− y)
)(∫ y

x

(vt−s(z)− vt(x)) dW (z)

)
dyds

(4.63)
and where Pt has been defined after (3.5) as the heat semigroup in R with variance σ2.

Proof. Recall that starting from the expression (3.17) for MV we already obtained the space
increment (4.54). We now add and substract vt(x) in the integral on the right hand side
of (4.54). With the definition (4.63) of R0 in mind, this yields

MV t(x, x′) = R0
t (x, x

′) + vt(x)

∫ t

0

∫
R

(
∂2xxps(x

′ − y)− ∂2xxps(x− y)
)
W 1(x, y) dyds. (4.64)

Furthermore, the decaying properties of the heat kernel p imply that
∫
R ∂

2
xxps(x

′ − y)dy = 0
for all x′ ∈ R. Therefore one can insert ±W (x′) in (4.64) and one gets

MV t(x, x′) = R0
t (x, x

′) + vt(x) (Bt(x′)− Bt(x)) , (4.65)

where the term Bt(ξ) is defined for ξ ∈ R by

Bt(ξ) =
∫ t

0

∫
R
∂2xxps(ξ − y)W 1(ξ, y)dyds.

Next we simplify the expression for Bt(ξ) by involving the relation ∂2xxps(y) = 2
σ2∂sps(y).

Interchanging integral and differentiation, we obtain

Bt(ξ) =
2

σ2

∫ t

0

∂s

(∫
R
ps(ξ − y)W 1(ξ, y)dy

)
ds =

2

σ2

∫ t

0

∂s (PsW (ξ)−W (ξ)) ds, (4.66)

where we recall that Ps designates the heat semigroup and where we have used the fact that∫
R ps(z)dz = 1. We now simply evaluate the time integral in (4.66) in order to get

Bt(ξ) =
2

σ2
(PtW (ξ)−W (ξ)) .
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Plugging this identity in (4.65) we end up with

MV t(x, x′) = R0
t (x, x

′) +
2

σ2
vt(x) ((PtW (x′)−W (x′))− (PtW (x)−W (x))) ,

= R0
t (x, x

′) +
2

σ2
vt(x) (PtW (x′)− PtW (x))− 2

σ2
vt(x) (W (x′)−W (x)) ,

from which our claim (4.62) is easily deduced. □

In view of Lemma 4.11, the estimate of R(MV)t(x, x′) contains two ingredients: the
R0
t (x, x

′)-estimate and the heat semigroup variation estimate. We develop these two in-
gredients separately, starting with an estimate for R0

t (x, x
′).

Lemma 4.12. We consider the setting of Lemma 4.10, and let R0 the increment defined
by (4.63). Then for any t ∈ (0, T ] and x, x′ ∈ [−a, a], we have∣∣R0

t (x, x
′)
∣∣ ⩽ C · κE(a, t)Θ ·Q(a, t) · |x′ − x|2β. (4.67)

Proof. As in the proof of Lemma 4.9 we divide our discussion into two cases, according to
the value of |x′ − x|.

Case (i): |x′ − x|2 ⩽ t. In this case, we start with the following decomposition:

R0
t (x, x

′) = J +K, (4.68)

where the terms J and K are respectively defined by

J :=

∫ |x′−x|2

0

ds

∫
R

(
∂2xxps(x

′ − y)− ∂2xxps(x− y)
)(∫ y

x

(vt−s(z)− vt(x))dW (z)

)
dy (4.69)

K :=

∫ t

|x′−x|2
ds

∫
R

(
∂2xxps(x

′ − y)− ∂2xxps(x− y)
)(∫ y

x

(vt−s(z)− vt(x))dW (z)

)
dy. (4.70)

Next we further divide the integral J in (4.69) as

J = J1(x
′)− J1(x) + J2, (4.71)

where the terms J1(ξ) and J2 are given by

J1(ξ) =

∫ |x′−x|2

0

ds

∫
R
∂2xxps(ξ − y)

(∫ y

ξ

(vt−s(z)− vt(ξ))dW (z)

)
dy, (4.72)

J2 =

∫ |x′−x|2

0

ds

∫
R
∂2xxps(x

′ − y)
(
(vt(x

′)− vt(x)) ·W 1(x′, y)
)
dy. (4.73)

We now proceed to estimate the terms in (4.69)-(4.73). Let us start with a bound on the
term J1(ξ) defined by (4.72). To this aim, we first resort to the same kind of change of
variables as for (4.46). We get

|J1(ξ)| ⩽
∫ |x′−x|2

0

ds

∫
R

|∂2xxp1(w)|
s

·

∣∣∣∣∣
∫ ξ+

√
sw

ξ

(vt−s(z)− vt(ξ))dW (z)

∣∣∣∣∣ dw.
We are now in a position to apply Lemma 4.5 directly (with σ1 = 0), which yields

|J1(ξ)| ⩽ C · κΘE(a, t)aχ ·Q(a, t) · |x′ − x|2β. (4.74)
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As far as the J2 integral is concerned, we perform our usual change of variable in space. We
obtain

J2 =

∫ |x′−x|2

0

ds

s

∫
R
∂2xxp1(w) · (vt(x′)− vt(x)) ·W 1(x′, x′ +

√
sw) dw. (4.75)

Then we estimate the right hand side of (4.75) thanks to the fact that v verifies Definition 3.9
and κα,χ(w), as introduced in (3.21), is finite. We obtain

|vt(x′)− vt(x)| ⩽ E(a, t)Θaβ/2|x′ − x|β, (4.76)∣∣W 1(x′, x′ +
√
sw)
∣∣ ⩽ CκPu(w)a

χsα/2. (4.77)

By substituting (4.76)-(4.77) into (4.75) and performing the w-integral, we arrive at

|J2| ⩽ C · κE(a, t)Θaχ+β/2|x′ − x|β ·
∫ |x′−x|2

0

sα/2−1ds

⩽ C · κE(a, t)Θaχ+β/2|x′ − x|β · |x′ − x|α ⩽ C · κΘE(a, t) ·Q(a, t) · |x′ − x|2β. (4.78)

Next we estimate the K-integral given by (4.70). We start by writing ∂2xxps(x
′ − y) −

∂2xxps(x− y) in terms of a spatial derivative. This yields

K =

∫ t

|x′−x|2
ds

∫
R
dy

∫ x′

x

∂3xps(u− y)du

∫ y

u

(vt−s(z)− vt(x))dW (z)dy,

where we have used the fact that integrals like (4.53) do not depend on the parameter a.
Then we insert ±vt(u) in the integral above in order to get the decomposition

K = K1 +K2, (4.79)

where K1 and K2 are defined by

K1 =

∫ t

|x′−x|2
ds

∫
R
dy

∫ x′

x

∂3xps(u− y)du

∫ y

u

(vt−s(z)− vt(u))dW (z)dy, (4.80)

K2 =

∫ t

|x′−x|2
ds

∫
R
dy

∫ x′

x

∂3xps(u− y)du(vt(u)− vt(x))W
1(u, y)dy. (4.81)

We now devote our efforts to upper bound K1 and K2.
In order to estimate the K1-integral, we set again y = u+

√
sw. We obtain

K1 =

∫ x′

x

du

∫ t

|x′−x|2

ds

s3/2

∫
R
∂3xp1(w)

∫ u+
√
sw

u

(vt−s(z)− vt(u))dW (z)dw.

Along the same lines as for the estimation of I2 in the proof of Lemma 4.9, we bound the
term s−(1/2−β) by |x′ − x|β−1 and we enlarge the s-integral to the interval [0, t]. We get

K1 ⩽ |x′ − x|1−2β ·
∫ x′

x

du

∫ t

0

ds

s1+β

∫
R

∣∣∂3xp1(w)∣∣ ·
∣∣∣∣∣
∫ u+

√
sw

u

(vt−s(z)− vt(u))dW (z)

∣∣∣∣∣ dw.
We are now able to apply Lemma 4.5 with σ1 = β and we obtain

K1 ⩽ C · κΘE(a, t) ·Q(a, t) · |x′ − x|2β. (4.82)
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Let us bound the term K2 defined by (4.81). The change of variable y = u+
√
sw together

with (4.40) yields

K2 =

∫ x′

x

du

∫ t

|x′−x|2

ds

s3/2

∫
R
∂3xp1(w)(vt(u)− vt(x))W

1(u, u+
√
sw)dw. (4.83)

In addition, owing to (3.21) and the fact that v fulfills the assumptions of Definition 3.9, we
have

|vt(u)− vt(x)| ⩽ E(a, t)Θ · aβ/2|x′ − x|β and
∣∣W 1(u, u+

√
sw)
∣∣ ⩽ CκPu(w)a

χsα/2.

Plugging this information into (4.83) we get

K2 ⩽ C · κΘE(a, t) · aχ+β/2 · |x′ − x|1+β ·
∫ t

|x′−x|2
sα/2−3/2ds. (4.84)

Performing the s-integral and resorting to the relation |x′ − x|2 ⩽ t, we end up with

K2 ⩽ C · κΘE(a, t) · aχ+β/2 · |x′ − x|α+β ⩽ C · κΘE(a, t) ·Q(a, t) · |x′ − x|2β.

Let us summarize our considerations so far: we plug (4.74) and (4.78) into the decomposition
(4.71) for J . We also gather (4.82) and (4.84) into the decomposition (4.79) for K. Then we
report those estimates into the main decomposition (4.68). This achieves our claim (4.67)
for |x′ − x|2 ⩽ t.

Case (ii): |x′ − x|2 > t. This case is essentially contained in the estimate of the term J
defined by (4.69). That is, going back to the expression (4.63) for R0

t and using the fact that
the expression (4.53) does not depend on a, one can write we have

R0
t (x, x

′) = L1(x) + L1(x
′) + L2, (4.85)

where the quantities L1(ξ) and L2 are given by

L1(ξ) =

∫ t

0

ds

∫
R
∂2xxps(ξ − y)

∫ y

ξ

(vt−s(z)− vt(ξ))dW (z)dy, (4.86)

L2 =

∫ t

0

ds

∫
R
∂2xxps(x

′ − y) · (vt(x′)− vt(x))W
1(x′, y)dy. (4.87)

Then invoking the same kind of arguments as for the term I1(ξ) in (4.72), plus the fact that
|x′ − x|2 > t, we obtain

|L1(ξ)| ⩽ C · κΘE(a, t) ·Q(a, t) · tβ ⩽ C · κΘE(a, t) ·Q(a, t) · |x′ − x|2β.

Furthermore, thanks to the space regularity of v and owing to the decay of the heat kernel
p (see (4.76)-(4.77) for similar arguments) we get

|L2| ⩽ C · κE(a, t)Θaχ+β/2|x′ − x|β ·
∫ t

0

sα/2−1ds

⩽ C · κE(a, t)Θaχ+β/2|x′ − x|β · tα/2 ⩽ C · κE(a, t)Θ ·Q(a, t) · |x′ − x|2β. (4.88)

Gathering (4.87) and (4.88) into (4.85), we have shown (4.67) for |x′ − x|2 > t. Now the
proof of Lemma 4.12 is complete. □
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4.3.5. Estimation of the heat semigroup variation. Remember that we have obtained the de-
composition (4.62) for RMV . This decomposition involves two main terms, namely R0

t (x, x
′)

and the increment PtW (x′)− PtW (x). In this section we handle the latter increment. Our
main result is summarized in the following lemma.

Lemma 4.13. We stick to the notation of Lemma 4.10 and consider the double-sided Brow-
nian motion W of equation (3.1). Then for any t ∈ (0, T ] and x, x′ ∈ [−a, a], we have∣∣PtW (x′)− PtW (x)

∣∣ ⩽ C · κ · aχ · t−β/2 · |x′ − x|2β. (4.89)

Proof. As in Lemmas 4.9 and 4.12, we will separate the cases |x′ − x|2 ⩽ t and |x′ − x|2 > t.

Case (i): |x′ − x|2 ⩽ t. We start from the from the very definition of PtW (x) and write the
increment pt(x′ − y)− pt(x− y) as a spatial derivative in order to get

PtW (x′)− PtW (x) =

∫
R
(pt(x

′ − y)− pt(x− y))W (y)dy =

∫ x′

x

du

∫
R
∂xpt(u− y)W (y)dy.

Then perform the change of variable y = u+
√
tw, invoke relation (4.40) and use the decay

properties of ∂xp1. This yields

PtW (x′)− PtW (x) =
1√
t

∫ x′

x

du

∫
R
∂xp1(w)W (u+

√
tw) dw

=
1√
t

∫ x′

x

du

∫
R
∂xp1(w)W

1(u, u+
√
tw)dw. (4.90)

Note that in (4.90) the variable u is an element of [x, x′] ⊆ [−a, a]. Therefore, recalling the
definition (3.21) of κ one can bound the increment W 1(u, u+

√
tw) as

|W 1(u, u+
√
tw)| ⩽ κ · (a+

√
t|w|)χ · tα/2|w|α ⩽ CκPu(w)a

χtα/2,

where we recall that Pu(w) designates a generic polynomial in w. Plugging this inequality
in (4.90) and performing the integral with respect to the variable w, we end up with∣∣PtW (x′)− PtW (x)

∣∣ ⩽ C · κaχtα/2−1/2|x′ − x|

= C · κaχ|x′ − x|2β · |x′ − x|1−2βt−β/2t
α−β
2 ·

(
|x′ − x|2

t

)1/2−β

⩽ C · κaχt−β/2 · |x′ − x|2β, (4.91)

where we have resorted to the fact that |x′ − x|2 ⩽ t for the last step. The estimate (4.91)
proves our claim (4.89) when |x′ − x|2 ⩽ t.

Case (ii): |x′ − x|2 > t. In this case, we simply write

PtW (x′)− PtW (x) =

∫
R
pt(y)W

1(x− y, x′ − y)dy.

Then we invoke (3.21) and the change of variable y = u+
√
tw again in order to get∣∣PtW (x′)− PtW (x)

∣∣ ⩽ κ|x′ − x|α
∫
R
(a+ |y|)χpt(y)dy = κ|x′ − x|α

∫
R
(a+

√
t|w|)χp1(w)dw
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Observe that whenever t < |x′ − x|2, we also have
√
t ⩽ a. Hence we obtain∣∣PtW (x′)− PtW (x)

∣∣ ⩽ C · κaχ · |x′ − x|α = C · κaχ · t−β/2|x′ − x|2β · tβ/2|x′ − x|α−2β

⩽ C · κaχ · t−β/2|x′ − x|2β · t
α−β
2 ⩽ C ′ · κaχ · t−β/2|x′ − x|2β. (4.92)

We have now proved our claim (4.89) when |x′ − x|2 > t. Hence gathering (4.91) and (4.92)
the desired estimate (4.89) is achieved. □

We now gather the previous lemmas and prove our main estimate for the remainder RMV .

Proof of Lemma 4.10. The remainder RMV has been decomposed in (4.62). Then for an
estimate of the term R0

t (x, x
′) in (4.62), we simply refer to Lemma 4.12. Next we deal with

the other term in (4.62), namely
2

σ2
vt(x) (PtW (x′)− PtW (x)) .

To this aim, we combine the fact that according to Definition 3.8 we have

JvK[0,t]×[−a,a]
β/2,β ⩽ Eθ,λ(a, t),

together with Lemma 4.13. We obtain∣∣vt(x)∣∣ · ∣∣PtW (x′)− PtW (x)
∣∣ ⩽ C · κΘE(a, t) · aχt−β/2 · |x′ − x|2β.

Gathering this upper bound with our estimate of R0
t (x, x

′), the proof of Lemma 4.10 is now
complete. □

4.3.6. Putting all the estimates together. Having all the previous variational estimates at
hand, we can now complete the proof of Proposition 4.6.

First of all, Lemma 4.7 gives

∥MV∥[0,t]×[−a,a]
∞ ⩽ C · κΘE(a, t) · λ−

α−β
4 . (4.93)

Next, Lemma 4.8 and Lemma 4.9 yield

∥MV∥[0,t]×[−a,a]
β/2,β ⩽ C · κΘE(a, t) · λ−

α−β
4 aβ/2. (4.94)

In addition, since we defined ∂W (MV) as −2v/σ2 in (3.29) and V is a controlled process
satisfying Definition 3.8, we get

J∂W (MV)K[0,t]×[−a,a]
β/2,β =

2

σ2
· JvK[0,t]×[−a,a]

β/2,β ⩽
2

σ2
·ΘE(a, t). (4.95)

Finally, Lemma 4.10 yields

∥R(MV)t∥2β ⩽ C · κΘE(a, t) ·Q(a, t), (4.96)

where the functions E and Q are introduced in (3.26). As a result, plugging (4.93)-(4.96) into
the definition (3.27) of the norm Θ = Θθ,λ(V) and recalling that we have chosen γ = α−β

4
,

we end up with

Θθ,λ(MV) = sup
a⩾1,t∈[0,T ]

E(a, t)−1 ·
(
JMVK[0,t]×[−a,a]

β/2,β + λ−γJ∂W (MV)K[0,t]×[−a,a]
β/2,β

+λ−γQ(a, t)−1∥R(MV)t∥2β
)
⩽ C(κ+ 1)λ−

α−β
4 Θ.
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Therefore, the proof of Proposition 4.6 is complete.

4.4. Estimating the deterministic input functions. Recall that the main fixed point
problem is associated with the transformation M̂ defined by

M̂ : V 7→ M̂V ≜ ψ1 + ψ2 +MV ,

where

ψ1
t (x) =

∫
R
∂xpt(x− y)f0(y)dy, and ψ2

t (x) =

∫ t

0

∫
R
∂xpt−s(x− y)gs(y)dyds. (4.97)

In order to complete the proof of Theorem 3.11, we now need to show that the functions ψ1, ψ2

can be considered as controlled processes in the space Bθ,λ introduced in Definition 3.8. In
order, to achieve this goal, we assume in this section that f0 ∈ C2

b (R) and g ∈ C2
b ([0, T ]×R).

4.4.1. Estimation of ψ1. In this section we focus on the term ψ1 and prove that this function
can be considered as a controlled process. We summarize our conclusions in the following
lemma.

Lemma 4.14. Let f0 be a function in C2
b (R), and consider ψ1 defined by (4.97). Then ψ1

is an element of Bθ,λ, whose norm Θ (see relation (3.27)) can be bounded as

Θθ,λ(ψ1) ⩽ C∥f ′′
0 ∥∞.

Proof. We first look at the time variations of ψ1. Namely, let t1 < t2. By definition, we have

ψ1
t2
(x)− ψ1

t1
(x) =

∫
R
(∂xpt2(x− y)− ∂xpt1(x− y))f0(y)dy.

Therefore writing ∂xpt2 − ∂xpt1 in terms of a time derivative, resorting to the relation ∂sps =
σ2

2
∂2xxps and setting y =

√
sw we get

ψ1
t2
(x)− ψ1

t1
(x) =

σ2

2

∫ t2

t1

ds

s3/2

∫
R
∂3xp1(w)f0(x+

√
sw)dw. (4.98)

Furthermore, thanks to the decaying properties of the heat kernel pt, a straightforward
integration by parts procedure shows that∫

R
∂3xpt(w)wdw = −

∫
R
∂2xxpt(w)dw = −2∂t

∫
R
pt(w)dw = 0,

where we have invoked the relation
∫
R pt(w)dw = 1 for the last step. In the same way, we

also have
∫
R ∂

3
xpt(w)dw = 0 for all t > 0. Hence we can recast (4.98) as

ψ1
t2
(x)− ψ1

t1
(x) =

σ2

2

∫ t2

t1

ds

s3/2

∫
R
∂3xp1(w)

(
f0(x+

√
sw)− f0(x)− f ′

0(x)
√
sw
)
dw. (4.99)

The Taylor expansion in (4.99), together with the fact that f0 ∈ C2
b (R), allow to get rid of

the singularity s−3/2 at s = 0. We obtain

|ψ1
t2
(x)− ψ1

t1
(x)| ⩽ C∥f ′′

0 ∥∞(
√
t2 −

√
t1) ⩽ C∥f ′′

0 ∥∞|t2 − t1|1/2. (4.100)
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Next, we consider the space variation of ψ1. Namely, let t ∈ (0, T ] and x, x′ be elements
of [−a, a]. Then we have

ψ1
t (x

′)− ψ1
t (x) =

∫
R
(∂xpt(x

′ − y)− ∂xpt(x− y))f0(y)dy.

Performing the same kind of manipulations as in (4.98) and (4.99), we easily get

ψ1
t (x

′)− ψ1
t (x) =

1

t

∫ x′

x

du

∫
R
∂2xxp1(w)

(
f0(u+

√
tw)− f0(u)− f ′

0(u)
√
tw
)
dw. (4.101)

Invoking the C2-regularity of f0, we thus obtain

|ψ1
t (x

′)− ψ1
t (x)| ⩽ C · ∥f ′′

0 ∥∞|x′ − x|. (4.102)

Taking limits, notice that the estimate (4.102) is also valid for t = 0. Owing to (4.100)-
(4.102), one can thus take ∂Wψ1 ≡ 0 in relation (3.23), and write

ψ1
t (y)− ψ1

t (x) = Rψ1
t (x, y),

with a remainder Rψ1
t enjoying a Hölder regularity of order 2β (recall that 2/3 < 2β < 1

according to (3.20)). Plugging this information in the definition (3.27) of Θθ,λ(ψ1), we thus
get that ψ1 ∈ Bθ,λ with ∂Wψ1

t ≡ 0. □

4.4.2. Estimation of ψ2. The term ψ2 can be estimated similarly to ψ1 in Section 4.4.1.
We label our results in the following lemma.

Lemma 4.15. Let g be a function in C2
b ([0, T ] × R), and consider ψ2 defined by (4.97).

Then ψ2 sits in the space Bθ,λ given in Definition 3.8, and we have

Θθ,λ(ψ2) ⩽ C sup
0⩽t⩽T

(
∥∂xgt∥∞ + ∥∂2xxgt∥∞

)
.

Proof. The proof is very similar to the proof of Lemma 4.14, and we omit some details for
the sake of conciseness. Let us start with the time variations of ψ2. Some easy algebraic
manipulations show that they can be decomposed as

ψ2
t2
(x)− ψ2

t1
(x) = I1 + I2, (4.103)

where I1 and I2 are respectively defined by

I1 =

∫ t1

0

ds

∫
R
(∂xpt2−s(x− y)− ∂xpt1−s(x− y)) gs(y)dy (4.104)

I2 =

∫ t2

t1

∫
R
∂xpt2−s(x− y)gs(y)dyds. (4.105)

we will now treat those two terms separately.
In order to estimate I1 above we proceed as in (4.98). Namely we express ∂xpt2−s−∂xpt1−s

in terms of a time derivative, invoke the relation ∂sps =
σ2

2
∂2xps, and set y =

√
sw. We end

up with

I1 =
σ2

2

∫ t1

0

ds

∫ t2−s

t1−s

du

u3/2

∫
R
∂3xp1(w)gs(x+

√
uw)dw.
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Next we successively set u = t1 + r − s and ρ = t1 + r − s in the above integral. We get

I1 =
σ2

2

∫ t2−t1

0

dr

∫ t1+r

r

dρ

ρ3/2

∫
R
∂3xp1(w)gt1+r−ρ(x+

√
ρw)dw. (4.106)

As in (4.99), we now cancel the singularity ρ−3/2 by means of a Taylor expansion for g and
take advantage of the decaying properties of the heat kernel p. We obtain

|I1| ⩽ C sup
0⩽s⩽t1

∥∂2xxgs∥∞ ·
∫ t2−t1

0

dr

∫ t1+r

r

dρ
√
ρ
⩽ C

√
T sup

0⩽s⩽t1
∥∂2xxgs∥∞ · |t2 − t1|. (4.107)

Let us now turn to the time variations in I2. That is setting u = t2 − s in the integral
defining I2 and proceeding as in (4.101), we get

I2 =

∫ t2−t1

0

du

u1/2

∫
R
∂xp1(w)

(
gt2−u(x+

√
uw)− gt2−u(x)

)
dw.

It follows that
|I2| ⩽ C sup

0⩽s⩽t2
∥∂xgs∥∞ · |t2 − t1|. (4.108)

To summarize, plugging (4.107) and (4.108) into (4.103), we can bound the time variations
of ψ2 as follows ∣∣ψ2

t2
(x)− ψ2

t1
(x)
∣∣ ⩽ C · sup

0⩽s⩽t2
∥∂xgs∥∞ · |t2 − t1|. (4.109)

We now handle the spatial variations of ψ2. Namely consider t ∈ [0, T ] and x, x′ ∈ [−a, a].
Then we have

ψ2
t (x

′)− ψ2
t (x) =

∫ t

0

ds

∫
R
(∂xps(x

′ − y)− ∂xps(x− y)) gt−s(y)dy.

Along the same lines as for (4.99), (4.101) and (4.108), we obtain

ψ2
t (x

′)− ψ2
t (x) =

∫ x′

x

du

∫ t

0

ds

s

∫
R
∂2xxp1(w)

(
gt−s(u+

√
sw)− gt−s(u)− ∂xgt−s(u)

√
sw
)
dw.

Owing to the C2−regularity of g, this yields

|ψ2
t (x

′)− ψ2
t (x)| ⩽ C · sup

0⩽s⩽t
∥∂2gs∥∞ · t · |x′ − x|. (4.110)

Gathering (4.109) and (4.110) we can now conclude as in Lemma 4.14 that ψ2 ∈ Bθ,λ with
∂Wψ

2
t ≡ 0. □

4.5. Completing the proof of Theorem 3.11. We will use a classical fixed point argu-
ment. Specifically, we will prove that if λ is large enough we have

Θθ,λ
(
M̂V2 − M̂V1

)
⩽

1

2
Θθ,λ(V2 − V1), (4.111)

which is enough to conclude for the existence of a unique V∗ ∈ Bθ,λ such that M̂V∗ = V∗.
In order to achieve (4.111), observe that due to our definition (3.30), we have

M̂V2 − M̂V1 = MV2 −MV1 = M(V2 − V1), (4.112)
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where the second equality stems from the fact that M is linear. Next, owing to inequal-
ity (4.39) in Proposition 4.6 (whose proof is spelled out in Section 4.3.6), we have

Θθ,λ (M(V2 − V1)) ⩽
1

2
Θθ,λ (V2 − V1) ,

for λ large enough. Together with (4.112), this entails (4.111) and finishes our proof of
Theorem 3.11 item (ii). Item (iii) is then achieved taking into account the fact that we
initiate the Picard iterations from V0 = ψ1 +ψ2, where we recall that ψ1 and ψ2 are defined
by relation (3.31).

Remark 4.16. The above choice of λ relies on the rough path norm κα,χ(W). As a result,
the space (Bθ,λ,Θθ,λ) also implicitly relies on κα,χ(W). Nonetheless, we have mentioned in
Remark 3.10 that the space Bθ,λ is increasing in λ. As a result, we have a canonical notion
of existence and uniqueness in the space ∪λ>1Bθ,λ which is independent of the quantity
κα,χ(W).

5. Strong approximation of Brownian motion under Hölder metric

In this section, we construct a coupling between the discrete and continuous environments
and estimate their (rough path) distance with respect to the type of norm introduced in
(3.21). This is a necessary ingredient for establishing the continuity estimate between Sinai’s
random walk and the Brox diffusion in Section 6.

Recall that Sinai’s random walk is defined through an environment {ω+
x : x ∈ Z} which is

given in Definition 2.1. In order to compare the discrete and continuous environments prop-
erly, we shall first define a continuously interpolated process from the discrete environment.

Notation 5.1. For δ > 0, the rescaled environment {ω+,δ
x : x ∈ δZ} is introduced in (2.15).

We have defined an approximate white noise {U̇ δ(x) : x ∈ δZ} in (2.17). We now introduce
a modified approximate white noise {Ū δ(x) : x ∈ δZ} by setting

Ū δ = −2U̇ δ, where U̇ δ(x) = 2ω+,δ
x − σ2 = ω+,δ

x − ω−,δ
x . (5.1)

This noise will be mapped into a field with continuous spatial parameter {Û δ(x) : x ∈ R}
by setting

Û δ ≡ linear interpolation obtained from Ū δ. (5.2)

More specifically, we set Û δ(0) = 0 and for x ∈ δZ we define Û δ(x) recursively by

Û δ(x− δ, x) ≡ Û δ(x)− Û δ(x− δ) = Ū δ(x).

Then we require that Û δ is linear on each subinterval [x− δ, x].

With this notation in mind we now emphasize a technical point in our considerations.
Namely, according to Sinai’s assumptions for recurrence, we have that E[log(ω−

x /ω
+
x )] = 0,

and therefore the random variables U̇ δ(x) defined by (5.1) are not necessarily centered.
Nevertheless, we get an asymptotic centering. Let us label this property for further use. Let
σ2
1 denote the variance of the variable ξx ≜ log(ω−

x /ω
+
x ).
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Lemma 5.2. For δ > 0 and x ∈ δZ, let Ū δ(x) be defined by (5.1). We decompose Ū δ(x) as

Ū δ(x) = Ū δ
1 (x) + Ū δ

2 (x), (5.3)

where Ū δ
1 , Ū

δ
2 are respectively defined by

Ū δ
1 (x) ≜ Ū δ(x)− E

[
Ū δ(x)

]
, and Ū δ

2 (x) ≜ E
[
Ū δ(x)

]
. (5.4)

Then the following holds true:

(i) the random variable Ū δ
1 (x) is centered with variance Var

(
Ū δ
1 (x)

)
= σ4σ2

1δ + o(δ).
(ii) Ū δ

2 (x) is of order O(δ3/2).

Proof. We have already argued that (i) holds true in Remark 2.16 (cf. (2.26) and (2.27)).
We will thus focus on item (ii). Next let us recast (2.15) by setting

ξδx = log(ω−
x/δ/ω

+
x/δ). (5.5)

Thanks to relation (2.13) we get

ω+,δ
x =

σ2

2
· 2

1 + e
√
δξδx

=
σ2

2

(
1− tanh

(√
δξδx
2

))
(5.6)

Hence owing to expression (5.1) we get

Ū δ
2 (x) = 2σ2E

[
tanh

(√
δ
ξδx
2

)]
.

Resorting to a Taylor expansion of the function tanh and an easy dominated convergence
argument, we thus obtain

Ū δ
2 (x) = σ2

(
δ1/2

2
E[ξδx] +

δ3/2

3
E

[(
ξδx
2

)3
]
+ o(δ3/2)

)
= cσδ

3/2 + o(δ3/2), (5.7)

where we have invoked the recurrence hypothesis E[ξδx] = 0 for the last identity. This finishes
the proof. □

From the above discussion, it is natural to view the centred process Û δ
1 as a discrete

approximation of W (which will be coupled to W according to Theorem 5.3 below) and
regard Û δ

2 as a remainder. According to Lemma 5.2 (ii), the exact variance of the Brownian
motion W should be given by

τ 2 ≜ σ4σ2
1. (5.8)

Here we do not want to view Û δ as an approximation of W (under rough path metric) since
the straight line x 7→ Û δ

2 (x) does not have the correct spatial growth aχ encoded in the
definition (3.21). With those preliminaries in hand, our main result in this section is stated
as follows.

Theorem 5.3. Let W = {W (x) : x ∈ R} be a given two-sided Brownian motion with
variance τ 2 defined on some probability space (Ω,F ,P). Let α, χ be given fixed parameters
satisfying the constraint (3.20). We denote by F the common distribution of the random
variables ξx = log(ω−

x /ω
+
x ) defined by (2.13). Then for each δ ∈ (0, 1), one can construct
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a stochastic process Ū δ
1 = {Ū δ

1 (x) : x ∈ δZ} on (Ω,F ,P) such that the following properties
hold true.

(i) The random variables {Ū δ
1 (x) : x ∈ δZ} are independent and identically distributed, with

a distribution determined by the following relation:

Ū δ
1 (x)

law
= −4

(
σ2

1 + e
√
δZ

− E

[
σ2

1 + e
√
δZ

])
, with Z

law
= F.

(ii) Let Û δ
1 be the interpolated process constructed from Ū δ

1 over the grid δZ. Recall that
the rough path lifting W of W is defined by (3.18). Correspondingly, we also define Ûδ

1 =

(Û δ
1 , Û

δ;2
1 ) where Û δ;2

1 (x, y) ≜ Û δ
1 (x, y)

2/2. Consider the rough path distance between Ûδ
1 and

W defined by

ρα,χ

(
Ûδ

1,W
)
≜ sup

a⩾1

(
∥Û δ

1 −W∥[−a,a]α

aχ
+

∥Û δ;2
1 −W 2∥[−a,a]α

a2χ

)
. (5.9)

Then for any given η ∈ (0, 1/2 − α) and q > (1/2 − α − η)−1, there exists a constant
C = Cα,χ,η,q > 0 such that ∥∥ρα,χ (Ûδ

1,W
)∥∥

Lq ⩽ Cδη (5.10)

for all δ ∈ (0, 1). In particular, by the Borel-Cantelli lemma, for any τ ∈ (0, η) we have the
following a.s. estimate:

ρα,χ

(
Ûδ

1,W
)
⩽ Ξδτ (5.11)

where Ξ is some a.s. finite random variable that is independent of δ.

The rest of this section is devoted to the proof of Theorem 5.3. The first ingredient is
a classical approximation theorem proved by Komlós-Major-Tusnády [21], which we now
recall.

Theorem 5.4 (Classical KMT Approximation). Let G be a distribution function on R
with mean zero and unit variance. We denote by R the moment generating function of
G, considered as a function of z ∈ C:

R(z) =

∫
R
ezxG(dx),

whenever the right hand side above is properly defined. Then we suppose that G satisfies the
following assumptions.

(i) The function R is well-defined in some neighbourhood (−t0, t0) of the origin.
(ii) Either G is lattice-valued or there exists p > 1 such that R verifies∫

R
|R(t+ iu)|pdu <∞, for all t such that |t| < t0. (5.12)

Then given a sequence {Yn : n ⩾ 1} of i.i.d. standard normal random variables on some
probability space (Ω,F ,P), there exist a sequence {fn : n ⩾ 1} of Borel functions from R2nto
R such that

Xn ≜ fn(Y1, . . . , Y2n)

defines an i.i.d. sequence with distribution G and the following estimate holds true:
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P

(
max
1⩽k⩽n

|Sk − Tk| > C log n+ x

)
⩽ Ke−λx ∀n ⩾ 1, x > 0. (5.13)

Here the random variables Sk and Tk are respectively defined by Sk ≜ X1 + · · · +Xk, Tk ≜
Y1 + · · ·+ Yk, and C,K, λ are constants depending only on G.

Remark 5.5. The condition (5.12) is satisfied if G has a C1 density function with at most
finitely many algebraic singularities. It should be seen as a mere technical assumption.
The coupling between the two sequences {Xn}, {Yn} still exists without this assumption.
However, the price to pay is that both sequences need to be constructed together in this case
(one can no longer first fix Y and then construct X from Y to satisfy the estimate (5.13)).
Correspondingly, without Condition (iii) in Definition 2.1 of the discrete environment, one
cannot fix W in advance; the coupling between W and Û δ

1 (in particular, W itself) will
also depend on δ. This will only lead to the sacrifice of an arbitrarily small power of δ in
the final result. To reduce technicalities, we therefore decide to impose Condition (iii) in
Definition 2.1.

Our next ingredient is a rough path convergence result based on a Kolmogorov type
estimate. Although it will be applied to a (trivial) R-valued rough path, we state the result
in a general finite dimensional vector space V . This does not affect the difficulty of our proof
and might be interesting in its own right. Let X be a V -valued path, whose increments are
written as X1

s,t. We assume that X can be enhanced as a second order rough path

Xs,t = (X1
s,t, X

2
s,t) ∈ V ⊕ V ⊗2, −a ⩽ s ⩽ t ⩽ a (5.14)

where the rough path notation is borrowed from [11]. For α ∈ (1/3, 1/2) we define

∥X1∥α ≜ sup
−a⩽s<t⩽a

∥X1
s,t∥

|t− s|α
, ∥X2∥2α ≜ sup

−a⩽s<t⩽a

∥X2
s,t∥

|t− s|2α
. (5.15)

Recall that the rough path property also means that X satisfies Chen’s relation. Namely,
for −a ⩽ s < u < t ⩽ a we have

X2
s,t −X2

s,u −X2
u,t = X1

s,u ⊗X1
u,t. (5.16)

We now state our main rough path convergence theorem based on Kolmogorov type esti-
mates.

Theorem 5.6. Let Xs,t = (X1
s,t, X

2
s,t) and Ys,t = (Y 1

s,t, Y
2
s,t) be two random second-order

rough paths over the time horizon [−a, a] in some finite dimensional vector space V as defined
in (5.14)-(5.15). Let C, ρ, ε, α, ν, q be given positive parameters such that q > 2, ν > 1/q and
α ∈ (0, ν − 1/q). Suppose that the following moment bounds hold true:

∥X1
s,t∥Lq ⩽ Cρ|t− s|ν , ∥Y 1

s,t∥Lq ⩽ Cρ|t− s|ν (5.17)

and
∥X1

s,t − Y 1
s,t∥Lq ⩽ Cρε|t− s|ν , ∥X2

s,t − Y 2
s,t∥Lq/2 ⩽ Cρ2ε|t− s|2ν . (5.18)

Then there exist positive random variables K1 ∈ Lq, K2 ∈ Lq/2, such that

∥X1 − Y 1∥α ⩽ K1, ∥X2 − Y 2∥2α ⩽ K2 (5.19)
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and
∥K1∥Lq ⩽ C ′ρaν−αε, ∥K2∥Lq/2 ⩽ C ′ρ2a2(ν−α)ε,

where C ′ is a constant depending only on C, α, ν, q.

Proof. We divide this proof in several steps. Here we use the notation ≲ to denote an
estimate up to a multiplicative constant depending only on C, α, ν, q.
Step 1: Inequality on successive dyadic points. Let Dn ≜ {ka/2n : −2n ⩽ k ⩽ 2n} be the
n−th order dyadic partition of [−a, a] and D = ∪∞

n=0Dn. For i = 1, 2, we define

Ki
n = max

−2n+1⩽k⩽2n

∣∣∣X i
k−1
2n

a, k
2n
a
− Y i

k−1
2n

a, k
2n
a

∣∣∣ . (5.20)

Then for i = 1, 2 we trivially have

|Ki
n|q ⩽

2n∑
k=−2n+1

∣∣∣X i
k−1
2n

a, k
2n
a
− Y i

k−1
2n

a, k
2n
a

∣∣∣q .
Owing to assumption (5.18) we get

E[|K1
n|q] ⩽ 2n+1 · Cqρqεq

( a
2n

)νq
= 2Cqρqεqaνq2−n(νq−1).

This yields the following inequality:

∥K1
n∥Lq ≲ ερaν2−n(ν−1/q). (5.21)

Similarly, for the second level component we also have

∥K2
n∥Lq/2 ≲ ερ2a2ν2−2n(ν−1/q). (5.22)

Step 2: Decomposition of dyadic intervals. Let s < t be two dyadic points. There is a unique
m ⩾ −1 such that

2−(m+1)a < t− s ⩽ 2−ma. (5.23)
We claim that there exists a finite partition s = τ0 < τ1 < · · · < τL = t, such that:

(i) For each i, [τi, τi+1] is a dyadic sub-interval of order n for some n ⩾ m.

(ii) For each n ⩾ m, there are at most two intervals among the collection {[τi, τi+1]; 0 ⩽ i ⩽
L− 1} that belong to the dyadic partition Dn.

To prove the claim, we start from the point s. Denote ρ0 ≜ s. By uniquely writing s = k
2n
a

with k being an odd number, we set ρ1 ≜ k+1
2n
a . We then reduce ρ1 to the unique form of

k′

2n′ a where k′ is odd, and iterate this construction. In this way we produce a family (ρi) such
that if we write ρi− ρi−1 = 2−nia, then we have ni+1 < ni. Denote by M the last index such
that ρM ⩽ t. Since n0 = n, ni+1 < ni, ρi − ρi−1 = 2−nia and we are working on the interval
[0, 1], the quantity M is clearly finite. Therefore we have obtained a family {ρ1, . . . , ρM+1}
such that

s < ρ1 < ρ2 < · · · < ρM ⩽ t < ρM+1.

As mentioned above, the indices ni satisfy ni+1 < ni. Thus the intervals [ρi, ρi+1] correspond
to different orders of dyadic partitions Dni

. In addition, [ρi−1, ρi] is always a dyadic interval
of some order n ⩾ m since

ρi − ρi−1 ⩽ t− s ⩽ 2−ma.
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If ρM happens to be equal to t, the ρi’s give the desired partition and we are done. If ρM < t,
we start from the t-end and propagate towards the left direction in exactly the same way as
above to obtain

µN+1 < ρM ⩽ µN < µN−1 < · · · < µ1 < µ0 ≜ t,

where µN is the last point that is not smaller than ρM . We claim that ρM = µN . Indeed,
suppose on the contrary that ρM ̸= µN . Then

µN+1 < ρM < µN ⩽ t < ρM+1.

Let us write

[ρM , ρM+1] =

[
k

2p
a,
k + 1

2p
a

]
, and [µN+1, µN ] =

[
l − 1

2q
a,

l

2q
a

]
.

Since µN ∈ (ρM , ρM+1) and ρM , ρM+1 are adjacent dyadic points, µN has to be a finer dyadic
point, i.e. q > p. Similarly, since ρM ∈ (µN+1, µN) we must also have p > q. This clearly
gives a contradiction. As a result, we have ρM = µN . Summarizing our considerations for
this step, the partition

{ρ0, ρ1, . . . , ρM = µN , µN−1, . . . , µ1, µ0}
satisfies our two claims (i) and (ii), with L =M +N .
Step 3: Proof for the first level of the rough path. We now take the results of Step 2 for
granted and turn to the proof of (5.19) for X1 − Y 1. We start by introducing another piece
of notation. Namely, for i = 1, 2 and −a ⩽ s ⩽ t ⩽ a we write

Zi
s,t := X i

s,t − Y i
s,t. (5.24)

As in Step 2, consider s, t satisfying (5.23) for a given m ≥ −1. From the properties of the
partition {τ0, . . . , τL} established in Step 2, we get

|Z1
s,t| ⩽

M+N∑
j=1

|Z1
τj−1,τj

| ⩽ 2
∞∑
n=m

K1
n,

where we recall that K1
n is defined by (5.20). Thus, thanks to the fact that t− s ⩾ 2−(m+1)a,

we obtain
|Z1

s,t|
|t− s|α

⩽ 2
∞∑
n=m

K1
n

|t− s|α
≲

∞∑
n=1

K1
n

aα2−nα
:= K1. (5.25)

Note that we have established (5.25) for dyadic points only. However, due to the fact that we
have assumed Z1 to be continuous, one can easily extend (5.25) to any couple −a ⩽ s ⩽ t ⩽ a
by taking limits over dyadic points. Hence we proved that

∥Z1∥α ⩽ K1. (5.26)

Moreover, due to the constraint α ∈ (0, ν − 1/q), the random variable K1 has finite q-
moments. Indeed, owing to (5.21) one has

∥K1∥Lq ⩽ a−α
∞∑
n=1

2nα∥K1
n∥Lq ≲ ρεaν−α

∞∑
n=1

2−n(ν−1/q−α) ≲ ρεaν−α. (5.27)

Gathering (5.26) and (5.27), we have thus proved (5.19) for the first component X1 − Y 1.
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Step 4. Proof for the second level of the rough path. Recall that Z2 is defined by (5.24).
Then invoking Chen’s relation (5.16), it is readily checked that for s ⩽ u ⩽ t we have

Z2
s,t = Z2

s,u + Z2
u,t +X1

s,u ⊗ (X1
u,t − Y 1

u,t) + (X1
s,u − Y 1

s,u)⊗ Y 1
u,t. (5.28)

Considering two dyadic points s < t such that (5.23) holds true and iterating relation (5.28)
over the partition {τ0, . . . , τL} constructed in Step 2, we end up with

Z2
s,t =

N∑
l=1

Z2
τl−1,τl

+
N∑
l=2

Z1
τ0,τl−1

⊗X1
τl−1,τl

+
N∑
l=2

Y 1
τ0,τl−1

⊗ Z1
τl−1,τl

. (5.29)

Therefore we will bound Z2
s,t in the following way:

|Z2
s,t| ⩽

N∑
l=1

|Z2
τl−1,τl

|+
N∑
l=2

|Z1
τ0,τl−1

| · |X1
τl−1,τl

|+
N∑
l=2

|Y 1
τ0,τl−1

| · |Z1
τl−1,τl

|. (5.30)

Next we recall that K1
n, K

2
n are defined by (5.20), and that we have obtained their moment

estimates in (5.21) and (5.22) respectively. In addition to the random variables K1
n, K

2
n, we

define two more random quantities Mn and Nn as follows:

Mn = max
−2n+1⩽k⩽2n

∣∣∣X1
k−1
2n

a, k
2n
a

∣∣∣ , and Nn = max
∣∣∣Y 1

k−1
2n

a, k
2n
a

∣∣∣ .
Similarly to (5.21), it is easily seen that

∥Mn∥Lq ∨ ∥Nn∥Lq ≲ ρaν2−n(ν−1/q). (5.31)

Plugging this information into (5.30) we get that

|Z2
s,t| ⩽ 2

∞∑
n=m+1

K2
n + 4

(
∞∑

n=m+1

K1
n

)
·

(
∞∑

n=m+1

(Mn +Nn)

)
,

from which we obtain
|Z2

s,t|
|t− s|2α

≲ L+K1 ·R, where L ≜
∞∑
n=1

K2
n

2−2nαa2α
, R ≜

∞∑
n=1

Mn +Nn

2−nαaα
. (5.32)

We can now estimate the terms L and R in (5.32). Indeed, the inequality (5.22) yields

∥L∥Lq/2 ⩽ a−2α

∞∑
n=1

22nα∥K2
n∥Lq/2 ≲ a2(ν−α)ρ2ε

∞∑
n=1

22nα2−2n(ν−1/q) ≲ a2(ν−α)ρ2ε. (5.33)

Similarly, the inequality (5.31) yields

∥R∥Lq ≲ ρaν−α. (5.34)

Reporting these relations into (5.32) and using an approximation procedure along dyadics
as we did in Step 3, we end up with

∥Z2∥2α ≲ L+K1R =: K2.

Gathering the estimates (5.27), (5.33) and (5.34), we arrive at

∥K2∥Lq/2 ⩽ ∥L∥Lq/2 + ∥K1R∥Lq/2 ⩽ ∥L∥Lq/2 + ∥K1∥Lq∥R∥Lq ≲ ερ2a2(ν−α).

This gives the desired estimate for the second level difference X2 − Y 2 and finishes the
proof. □
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Now we are in a position to prove Theorem 5.3.

Proof of Theorem 5.3. Recall that Ū δ
1 is defined by (5.4). Before introducing the coupling,

we make one more technical observation on the structure of this random field. In view of
the Taylor expansion (5.7), let us further write

Ū δ
1 (x) = Ū δ

1,1(x) + Ū δ
1,2(x), (5.35)

where we recall that ξδx is defined by (5.5) and

Ū δ
1,1(x) ≜

√
δσ2ξδx, Ū δ

1,2(x) ≜ Ū δ
1 (x)−

√
δσ2ξδx. (5.36)

In the decomposition (5.36), the term Ū δ
1,2(x) is easily handled. Indeed, notice that {Ū δ

1,2(x) :
x ∈ δZ} is a sequence of i.i.d. centered random variables. Next the ellipticity assumption
(i) in Definition 2.1 together with our definition (5.5) imply that ξδx is uniformly bounded in
(x, δ). Owing to the Taylor expansion (5.7), we thus get∣∣Ū δ

1,2(x)
∣∣ ⩽ cδ3/2, (5.37)

for a universal constant c. The term Ū δ
1,2(x) in (5.36) can thus be treated as asymptotically

null, and we will mostly focus our attention on Ū δ
1,1(x).

Let us now describe the coupling between W and Ū δ
1 . Namely let W be a two-sided

Brownian motion with variance τ 2 ≜ σ4Var(F ) defined on some probability space (Ω,F ,P),
where we recall that F is the common distribution of the random variables ξx. For each fixed
δ ∈ (0, 1), we set W δ

t ≜ δ−1/2Wδt. Note that W δ is again a two-sided Brownian motion with
variance τ 2. With obvious adaptation of constants, one can apply Theorem 5.4 to construct
an i.i.d. family {Xδ

m : m ∈ Z} on the same probability space (Ω,F ,P), such that

Xδ
m

law
= σ2 log

(
ω−
0

ω+
0

)
= σ2ξ0, (5.38)

where the second identity stems from (2.13), and the following estimate holds true:

P

(
max

−k⩽l<m⩽k

∣∣Sδl,m −W δ
l,m

∣∣ > C log k + x

)
⩽ Ke−λx ∀k ⩾ 1, x > 0, (5.39)

where Sδl,m ≜ Xδ
l+1 + · · ·+Xδ

m and C,K, λ are constants depending only on the distribution
of (5.38).

We now proceed to define an approximate white noise Û δ
1 . Namely, in view of (5.6), we

define

ω+,δ
x ≜

σ2

2
· 2

1 + eσ
−2

√
δXδ

x/δ

, x ∈ δZ.

With (5.4) and (5.36) in mind, we then set

Ū δ
1 (x) ≜ −4

(
ω+,δ
x − E[ω+,δ

x ]
)
, Ū δ

1,1(x) ≜
√
δXδ

x/δ, Ū δ
1,2(x) ≜ Ū δ

1 (x)− Ū δ
1,1(x) (5.40)

and define the linearly interpolated processes Û δ
1 , Û

δ
1,1, Û

δ
1,2 accordingly. We also introduce

the trivial rough path lifting

Ûδ
1 ≜ (Û δ

1 , Û
δ;2), where Û δ;2

1 (x, y) ≜
Û δ
1 (x, y)

2

2
(5.41)
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as required in the theorem (and recall the lifting W of W defined by (3.18)). Note that all
these processes have the correct distributions associated with the a priori distribution of the
discrete environment and they are all defined on the same probability space (Ω,F ,P) where
the Brownian motion W is given.

For now we fix a ⩾ 1 and we want to apply Theorem 5.6 to the random rough paths
X = Ûδ

1 and Y = W over [−a, a]. To this end, we need to first establish moment estimates
in the form of (5.17) and (5.18). Recall that α, χ are given fixed parameters satisfying (3.20)
and we also fix η, q to be such that η ∈ (0, 1/2 − α) and q > (1/2 − α − η)−1 ∨ 2. Set
ν ≜ 1/2 − η. It is easily checked that the parameters α, q, ν satisfy the constraints in
Theorem 5.6. Moreover, we will prove in Lemma 5.7 below that for all x, y ∈ [−a, a] we have

∥Û δ
1 (x, y)∥Lq ⩽ Caη|y − x|ν (5.42)

∥W (x, y)∥Lq ⩽ Caη|y − x|ν (5.43)
∥Û δ

1 (x, y)−W (x, y)∥Lq ⩽ Caη · δη
(
1 + log(aδ−1)

)
· |y − x|ν , (5.44)

∥Û δ;2
1 (x, y)−W 2(x, y)∥Lq/2 ⩽ Ca2η · δη

(
1 + log(aδ−1)

)
· |y − x|2ν , (5.45)

Applying the above inequalities and Theorem 5.6 with

ρ = aη, ε = δη
(
1 + log aδ−1

)
,

we conclude that

∥Û δ
1 −W∥[−a,a]α ⩽ K1(a), ∥Û δ;2

1 −W 2∥2α ⩽ K2(a), (5.46)

where K1(a) ∈ Lq, K2(a) ∈ Lq/2 are random variables such that

∥K1(a)∥Lq ⩽ Ca1/2−αδη
(
1 + log aδ−1

)
, ∥K2(a)∥Lq/2 ⩽ Ca1−2αδη

(
1 + log aδ−1

)
, (5.47)

with some constant C depending only on α, η, q. Our goal is to estimate the distance
ρα,χ(Û

δ
1,W) defined by (5.9). Now plugging (5.46) into the definition (5.9) we easily get

ρα,χ(Û
δ
1,W) ⩽ K1 +K2,

where the random constants K1, K2 are respectively given by

K1 ≜ sup
a⩾1

K1(a)

aχ
, and K2 ≜ sup

a⩾1

K2(a)

a2χ
.

Since α, χ satisfy the constraint (3.20), by slightly adjusting η if necessary, we can rewrite
the bound (5.47) by∥∥K1(a)

aχ
∥∥
Lp ⩽ Ca−ζδη, and

∥∥K2(a)

a2χ
∥∥
Lp/2 ⩽ Ca−2ζδη,

where ζ is any fixed number in (0, χ − 1/2 + α) and C depends on ζ, α, η, p. Note that we
have used a different index p (instead of q in (5.47)) here.

To proceed further, we first estimate

P
(
K1 > y

)
= P

(
sup
a⩾1

K1(a)

aχ
> y

)
⩽

∞∑
a=1

P
(
K1(a)

aχ
> y

)
⩽ Cpy

−pδpη
∞∑
a=1

a−pζ .
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We fix a large p such that the last series is finite. It follows that

E[(K1)q] = q

∫ δη

0

yq−1P
(
K1 > y

)
dy + q

∫ ∞

δη
yq−1P

(
K1 > y

)
dy

⩽ δqη + Cp,ζδ
pηq

∫ ∞

δη
yq−p−1dy ⩽ Cp,q,ζδ

qη.

Therefore, we arrive at
∥K1∥Lq ⩽ Cp,q,ζδ

η,

and a similar estimate is proved along the same lines forK2. This yields the desired inequality
(5.10) and thus completes the proof of Theorem 5.3. □

We close this section by giving the technical lemma which is used in the proof of Theo-
rem 5.3.

Lemma 5.7. Recall that the coefficients α, β, η, χ, q satisfy 1/3 < β < α < 1/2, 0 < η <
1/2− α < χ < β/2 and q > (1/2− α− η)−1. We have also set 1/2− α = ν. The processes
(Û δ

1 , Û
δ;2
1 ) have been introduced in (5.41). Then the following moment estimates hold true,

for all x, y ∈ [−a, a]:

∥Û δ
1 (x, y)∥Lq ⩽ Caη|y − x|ν (5.48)

∥W (x, y)∥Lq ⩽ Caη|y − x|ν (5.49)
∥Û δ

1 (x, y)−W (x, y)∥Lq ⩽ Caη · δη
(
1 + log(aδ−1)

)
· |y − x|ν , (5.50)

∥Û δ;2
1 (x, y)−W 2(x, y)∥Lq/2 ⩽ Ca2η · δη

(
1 + log(aδ−1)

)
· |y − x|2ν , (5.51)

where C is a constant depending only on q and η.

Proof. Consider the partition Pδ
a ≜ [−a, a] ∩ δZ. Let x < y ∈ [−a, a]. We divide this proof

in several steps.
Step 1: Proof of (5.48) when x, y belong to the same interval. We assume for this step that
both x and y sit in Iδm = [(m− 1)δ,mδ] with some m ∈ Z. In this case, by the definition of
Û δ
1,1 we have

Û δ
1,1(x, y) =

y − x

δ
· Ū δ

1,1(mδ) =
y − x√

δ
·Xδ

m,

where Xδ
m has been defined in (5.38) and where we recall from (5.40) that Û δ

1 is obtained
through the relation Ū δ

1,1(x) =
√
δXδ

x/δ. Since Xδ
m has a given fixed distribution and since η

satisfies 1/2 + η + ν = 1 + η − α < 1 we obtain that

∥Û δ
1,1(x, y)∥Lq =

|y − x|√
δ

∥Xδ
m∥Lq ⩽ Cq

|y − x|1/2√
δ

|y − x|η+ν ⩽ Cq|y − x|ν , (5.52)

where the last inequality follows from the fact that |y − x| ⩽ δ ⩽ 1. As far as the process
Û δ
1,2 defined by (5.36) is concerned, we invoke the almost sure uniform bound (5.37) to write

∥Û δ
1,2(x, y)∥Lq =

|x− y|
δ

∥Ū δ
1,2(mδ)∥Lq ⩽ C

√
δ|y − x| ⩽ C|y − x|ν . (5.53)
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Gathering (5.52) and (5.53), we have thus proved (5.48) for x, y in a generic interval Iδm.
In order to check (5.49) in this interval, we just use the Brownian distribution of W . we
trivially get

∥W (x, y)∥Lq = E
[∣∣∣∣W (y)−W (x)√

y − x

∣∣∣∣q]1/q ×√
y − x = Cq

√
y − x

= Cq|y − x|η|y − x|ν ⩽ Cq2
ηaη|y − x|ν , (5.54)

which proves (5.49). Eventually let us check (5.50) on the interval Iδm (inequality (5.51) is
left to the patient reader). To this aim we put together (5.48) and (5.49). This yields

∥Û δ
1 (x, y)−W (x, y)∥Lq ⩽ ∥Û δ

1 (x, y)∥Lq + ∥W (x, y)∥Lq ⩽ Cq,η
√
y − x ⩽ Cq,ηδ

η|y − x|ν ,

from which we conclude (5.50).
Step 2: Proof of (5.48) when x, y belong to different subintervals. For simplicity, in what
follows we just assume that x = lδ and y = mδ for some l < m (otherwise we just add an
extra error term that falls into the first case). Therefore the quantities of the form Û δ will
be equal to the terms Ū δ. As in Step 1, we will divide the estimates into an estimate for U δ

1,1

and U δ
1,2 separately, according to (5.35). Now in order to prove (5.48) for Û δ

1,1 we go back
to (5.36) and (5.40). This allows to write

Û δ
1,1(x, y) =

√
δ

m∑
j=l+1

Xδ
j =

√
δ(m− l)×

∑m
j=l+1X

δ
j√

m− l
=

√
y − x×

∑m
j=l+1X

δ
j√

m− l
. (5.55)

Moreover, since {Xδ
j : j ∈ Z} are i.i.d. with a fixed distribution, according to the central

limit theorem we know that∥∥∥∥∥
∑m

j=l+1X
δ
j√

m− l

∥∥∥∥∥
Lq

⩽ Cq, for all l < m.

As a result, we have

∥Û δ
1,1(x, y)∥Lq ⩽ Cq|y − x|η|y − x|ν ⩽ Cq,ηa

η|y − x|ν . (5.56)

Let us turn now to the process Û δ
1,2 in (5.36) and (5.40). Here the main observation is the

following: by writing

Û δ
1,2(x, y) =

m∑
j=l+1

Ū δ
1,2(jδ) (5.57)

it is easily deduced from (5.40) that the right hand side above above is a sum of i.i.d. centered
random variables. Owing to (5.37) we end up with

E

[(
Û δ
1,2(x, y)

)2]
⩽ C(m− l)δ3 = Cδ2(y − x).

Considering the L2-norm and recalling that x, y ∈ [−a, a] this yields

∥Û δ
1,2(x, y)∥L2 ⩽ Cδ

√
y − x ⩽ Cηδa

η|y − x|ν . (5.58)
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In addition, as easy BDG type argument in the martingale increment (5.57) enables to
improve (5.58) into a Lq bound of the form

∥Û δ
1,2(x, y)∥Lq ⩽ Cη,qδa

η|y − x|ν . (5.59)

Now combining (5.56) and (5.59) into (5.36), we have proved inequality (5.48).
Step 3: Proof of (5.50). For the sake of conciseness, we will only treat the case x = lδ and
y = mδ for l < m as in Step 2. Let us separate again the study of Û δ

1,1 and Û δ
1,2. For the

term Û δ
1,1 we recast relation (5.55) as

Û δ
1,1(x, y) =

√
δSl,m, with Sl,m =

m∑
j=l+1

Xδ
j .

Then adopting the notation of (5.39) we have

Û δ
1,1(x, y)−W (x, y) =

√
δ
(
Sδl,m −W δ

l,m

)
.

Therefore with k ≜ |l| ∨ |m| we see that∣∣Û δ
1,1(x, y)−W (x, y)

∣∣ ⩽ √
δ max
−k⩽i<j⩽k

∣∣Sδi,j −W δ
i,j

∣∣ =:
√
δLδ(k).

We now estimate Lδ(k) in the following way. First write

E
[
(Lδ(k))q

]
= q

∫ ∞

0

yq−1P
(
Lδ(k) > y

)
dy

= q

∫ C log k

0

yq−1P
(
Lδ(k) > y

)
dy + q

∫ ∞

0

(C log k + x)q−1P
(
Lδ(k) > C log k + x

)
dx .

In the first integral above we trivially bound the probability by 1. For the second integral
we invoke the tail estimate (5.39). We obtain

E
[
(Lδ(k))q

]
⩽ (C log k)q + q

∫ ∞

0

(C log k + x)q−1Ke−λxdx ⩽ Cq(1 + log k)q.

It follows that∥∥Û δ
1,1(x, y)−W (x, y)

∥∥
Lq ⩽ Cq

√
δ log k ⩽ Cqδ

η
(
1 + log aδ−1

)
|y − x|ν , (5.60)

where we have used our assumption that |x− y| ⩾ δ for the second inequality. It remains to
estimate the term Û δ

1,2, which is easily done as in (5.57)-(5.59). We get

∥Û δ
1,2(x, y)∥Lq ⩽ Cδ|y − x|η|y − x|ν ⩽ Cηδa

η|y − x|ν . (5.61)

Combining (5.60) and (5.61), we obtain the inequality (5.50).
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Step 4. Proof of (5.51). Here we will limit our analysis to the term Û δ;2
1 , the other term

being easily handled. Now, for (5.51) we simply observe that∥∥Û δ;2
1 (x, y)−W 2(x, y)

∥∥
Lq/2 =

∥∥1
2

(
Û δ
1 (x, y)−W (x, y)

)(
Û δ
1 (x, y) +W (x, y)

)∥∥
Lq/2

⩽
1

2

∥∥Û δ
1 (x, y)−W (x, y)

∥∥
Lq

(∥∥Û δ
1 (x, y)

∥∥
Lq +

∥∥W (x, y)
∥∥
Lq

)
⩽ Cq · aηδη

(
1 + log aδ−1

)
|y − x|ν · aη|y − x|ν

= Cqa
2ηδη

(
1 + log aδ−1

)
|y − x|2ν .

This gives the estimate (5.51) and completes the proof of the lemma. □

6. Convergence estimates

This section is devoted to the main steps towards a convergence of the discrete martingale
problems related to Sinai’s random walk to those related to the Brox diffusion. We will first
explain our global strategy in Section 6.1 and then delve into the details of computations.

6.1. The main convergence estimates and global strategy. Recall that in Proposition
2.24 we have obtained a discrete PDE for vδ := ∇δf . With this notation in hand, it is readily
checked that the discrete PDE in Proposition 2.24 can be spelled out as

vδtk(x) = ηδtk(x)−
1

2
δ3 ·

k−1∑
j=0

∑
y∈δZ

∇2,δ
x p̂δtj(x− y)Iδtk−1−tj(x, y), (6.1)

where the quantity ηδtk(x) is defined by

ηδtk(x) := δ
∑
y∈δZ

∇1,δ
x p̂δtk(x− y)f0(y) + δ3

k−1∑
j=0

∑
y∈δZ

∇1,δ
x p̂δtj(x− y)gtk−1−tj(y). (6.2)

In (6.1)-(6.2), recall that the kernel p̂δ is given by (2.72). Namely, we have

p̂δt (x− y) =
1

δ
pdt/δ2

(
x− y

δ

)
, (6.3)

where pd is introduced in Remark 2.22. We have also used the notation

Iδt (x, y) =
y∑

z=x

1

2

(
vδt (z) + vδt (z − δ)

)
Ū δ(z), with Ū δ(z) ≜ −2U̇ δ(z), (6.4)

where Ū δ and U̇ δ have been expressed in (5.1) and where the expression 1
2
(vδt (z)+ v

δ
t (z− δ))

stems from our formula (2.3) for ∇̂f . Indeed, notice that (2.3) can be read as ∇̂f(x) =
1
2
(∇f(x) +∇f(x − 1)). Also observe again that the change from U̇ δ to Ū δ is for matching

the (−1/2)-factor in the continuous equation (3.1).
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Next recall that in Section 4 we have analyzed the corresponding continuous space-time
equation (3.14), which can be recast similarly to (6.1) as

vt(x) = ηt(x)−
1

2

∫ t

0

∫
R
∂2xps(x− y)

(∫ y

x

vt−s(z)dW (z)

)
dyds

= ηt(x)−
1

2
(MV)t(x), (6.5)

where the function MV is defined by (3.17) in the rough path sense and η is given by

ηt(x) :=

∫
R
∂xpt(x− y)f0(y)dy +

∫ t

0

∫
R
∂xps(x− y)gt−s(y)dyds. (6.6)

In this section in order to ease notations we will also write

Wt(x) = (MV)t(x). (6.7)

Our global aim is to quantify the convergence of vδ to v as δ → 0, provided that Ū δ in
(6.1)-(6.4) converges to Ẇ in (6.5). More specifically, the result we wish to achieve is the
following.

Proposition 6.1. [Preliminary version] Let T be a fixed positive time horizon. Recall that
we consider some exponents α, β, χ, θ fulfilling condition (3.20) and we have chosen γ = α−β

4
.

We consider the norms κα,χ as in (3.21) and Θθ,λ as in (3.27). Pick λ such that

λ−γ

(
sup
δ∈(0,1]

κα,χ(Û
δ
1) + κα,χ(W)

)
=

1

4
. (6.8)

Then for the processes vδ, v defined respectively by (6.1) and (6.5) we have

d(ṽδ, v) ≲ δ1/17

for all sufficiently small δ. Here ṽδ denotes a proper linear interpolation of vδ and d(ṽδ, v)
is a suitable rough path distance between ṽδ and v.

Notice that Proposition 6.1 is stated here rather informally. The definitions of ṽδ, d(ṽδ, v)
as well as a more precise formulation of this proposition will be given in Proposition 6.5
below. We now elaborate on the global strategy employed to prove this basic result.

Step 0: Setting. Let us start with the discrete process vδ defined by the equation (6.1). In
order to compare it with the continuous rough path v, we shall consider a suitable linear
interpolation of vδ, which is denoted as ṽδ and is defined precisely in the following way.

Definition 6.2. For t ∈ δ2N+ and x ∈ R, we set

ṽδt (x) =
x2 − x

δ
vδt (x1) +

x− x1
δ

vδt (x2), (6.9)

where x1, x2 are the adjacent grid points in δZ such that x ∈ (x1, x2]. For general t ⩾ 0, we
further set

ṽδt (x) =

{
t2−t
δ2
ṽδt1(x) +

t−t1
δ2
ṽδt2(x), t ⩾ δ2;

ṽδδ2(x), t < δ2,
(6.10)

where t1, t2 are adjacent grid points in δ2N such that t ∈ (t1, t2].
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We also recall our Notation 5.1 for the linearly interpolated discrete environment, in par-
ticular, the decomposition Û δ = Û δ

1+Û
δ
2 where Û δ

1 is coupled with the Brownian environment
W according to Theorem 5.3 and Û δ

2 is merely a deterministic straight line x 7→ cδx where
cδ = O(δ3/2) as δ → 0 (see Lemma 5.2). With this notation and decomposition in hand,
the path ṽδt (·) should now be viewed as a continuous rough path controlled by Ûδ

1. Since
∂Wvt = −2vt in the continuous case, in order to expect a suitable convergence estimate one
should naturally define the Gubinelli derivative of ṽδt as

∂Ûδ
1
ṽδt ≜ −2ṽδt .

In addition, let us define κα,χ(Ûδ
1) and Θθ,λ(ṽδ) in exactly the same way as in the Brownian

case by replacing W with Ûδ
1 and v with ṽδ in relevant places. We also recall that the rough

path distance between Ûδ
1 and W is defined by (5.9). The controlled distance between ṽδ

and v is then defined by the following function:

dÛδ
1,W

(ṽδ, v) ≜ sup
t∈[0,T ]

Eθ,λ(a, t)−1 ×
(
Jṽδ − vK[0,t]×[−a,a]

β/2,β + λ−γJ∂Ûδ
1
ṽδ − ∂WvK

[0,t]×[−a,a]
β/2,β

+λ−γQ(a, t)−1
∥∥Rṽδt

Ûδ
1

−Rvt
W

∥∥[−a,a]
2β

)
. (6.11)

The estimation of dÛδ
1,W

(ṽδ, v) is the main goal of Proposition 6.1.

To describe the next few steps, let us introduce a slightly nonstandard notation for integer
parts. This notation will be useful to analyze the discretization procedure.

Notation 6.3. Let t ∈ R+ and x ∈ R. We denote by ⌊t⌋ the largest grid point in δ2N such
that ⌊t⌋ ⩽ t. In the same way, ⌊x⌋ is the largest point in δZ such that ⌊x⌋ ⩽ x. Writing
⌊·⌋N and ⌊·⌋Z for the usual integer parts, we have

⌊t⌋ =
⌊
t

δ2

⌋
N
δ2, and ⌊x⌋ =

⌊x
δ

⌋
Z
δ .

We now somewhat artificially transform the discrete equation (2.39) for vδ into a contin-
uous equation for ṽδ. That is we write

ṽδt (x) = J δ
t (x)−

1

2

∫ t

0

∫
R
∇2,δ
x p̂δ⌊s⌋(⌊x− y⌋)

(∫ y

x

ṽδt−s(z)dÛ
δ(z)

)
dyds, (6.12)

where we recall that p̂ is given by (6.3), and where J δ
t (x) is defined by the difference of the

two sides of the above equation. Also notice that the quantities ⌊·⌋ in (6.12) are introduced
in Notation 6.3. We obtain the following decomposition

ṽδt (x)− vt(x) = (J δ
t (x)− ηt(x))−

1

2

(
Wδ

t (x)−Wt(x)
)
, (6.13)

where Wδ,W are processes given by (recall our notation (6.7))

Wδ
t (x) ≜

∫ t

0

∫
R
∇2,δ
x p̂δ⌊s⌋(⌊x− y⌋)

(∫ y

x

ṽδt−s(z)dÛ
δ(z)

)
dyds, (6.14)

Wt(x) ≜
∫ t

0

∫
R
∂2xps(x− y)

(∫ y

x

vt−s(z)dW (z)

)
dyds = (MV)t(x). (6.15)
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Notice that Wδ,W will be controlled rough paths thanks to our a priori estimates from
Theorem 3.11 and Step 1 below. In the sequel we will also use the following notation for the
stochastic integrals in (6.13)-(6.14):

Iδs (x, y) ≜
∫ y

x

ṽδs(z)dÛ
δ(z), and Is(x, y) ≜

∫ y

x

vs(z)dW (z). (6.16)

With those notational preliminaries in hand, our strategy in order to get the convergence
of (6.12) to (6.5) can be summarized as follows.
Step 1: A priori estimates for the discrete equation. Based on the discrete equation (6.1),
we shall obtain a uniform estimate on the discrete path vδtk(x) under a discrete rough path
metric. This will be summarized in Proposition 6.13 below. This result shall allow us to
write down a corresponding uniform estimate on Θθ,λ(ṽδ) with respect to δ. More specifically,
one expects that

sup
δ>0

Θθ,λ
(
ṽδ
)
⩽M (6.17)

where M is a constant depending on κα,χ(W) as well as the initial data f0, g.
Step 2: Estimate dÛδ

1,W
(J δ, η). Our next task will be reduced to an analysis of the difference

J δ − ηδ, where ηδ is introduced in (6.2). Since ηδt (x) and ηt(x) are close to each other, it is
reasonable to expect that

dÛδ
1,W

(J δ, η) ⩽ CMδ
γ, (6.18)

with some exponent γ > 0, where CM is a constant depending on M arising from (6.17).
Step 3: Estimate dÛδ

1,W
(Wδ,W). For the processes Wδ and W respectively defined by (6.14)

and (6.15), we will express this distance in terms of dÛδ
1,W

(ṽδ, v), ρ(Ûδ
1,W) as well as errors

coming from the local CLT and Û δ
2 . In this step, it is important to obtain a contraction

factor (which can be made < 1) in front of the quantity dÛδ
1,W

(ṽδ, v).

We are now in a position to formulate our main convergence estimate for the distance
dÛδ

1,W
(ṽδ, v). Since the fixed point problems also involve an initial data f0 and an inhomo-

geneous term g, we first introduce the suitable spaces where these functions are assumed to
live.

Definition 6.4. Let L > 0 and r ∈ N. We say that a function f0 of the spatial variable x
is an element of CrL if

∥f0∥Cr
L
≜ sup

a⩾1
a−L sup

k⩽r, x∈[−a,a]

∣∣Dk
xf0(x)

∣∣ <∞.

Similarly, we say that a function g of the space-time parameter (t, x) is an element of CrL if,
denoting by Dij

t,xg the derivative ∂i+jg
∂ti∂xj

, we have

∥g∥Cr
L
≜ sup

a⩾1
a−L sup

i+j⩽r
t∈[0,T ], x∈[−a,a]

∣∣Dij
t,xg(t, x)

∣∣ <∞.

Our main convergence estimate for dÛδ
1,W

(ṽδ, v) is stated as follows.
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Proposition 6.5. Let f0, g ∈ CrL be given functions. Let α, β, χ, θ be given parameters
satisfying (3.20) and let β′ ∈ (β, α) be also given fixed. Recall that the distance dÛδ

1,W
(ṽδ, v)

is defined by (6.11) with respect to the parameters α, β, θ and any given λ > 1. We introduce
two additional quenched variables related to the paths Ûδ

1 and W , for a given constant C3:

κ̄(ω) ≜ sup
δ∈(0,1]

κα,χ(Û
δ
1) + κα,χ(W) (6.19)

κ̄′(ω) ≜ min
{
(4C3)

−2 , (4C3)
− 3

α−β · κ̄(ω)−
1

α−β
}
. (6.20)

Then there exist positive constants C1, C2, C3 depending only on these parameters and T ,
such that the following quenched estimate holds true for all δ ∈ (0, κ̄′(ω)]:

dÛδ
1,W

(ṽδ, v) ⩽ C1e
C2λ
(
∥f0∥C3

L
+ ∥g∥C3

L

)
×[

δβ +
(
1 + κα,χ(Û

δ
1) + κα,χ(W)

)2(
ρα,χ(Û

δ
1,W) + δ

β′(β′−β)

β′+β

)]
, (6.21)

where λ = λω is chosen by the relation below:

C3λ
−α−β′

4 κ̄(ω) =
1

4
. (6.22)

Finally, we give the precise formulation of Theorem 1.3 that was stated in the introduction.

Theorem 6.6. Let Xδ be the Sinai type random walk whose law is described by (1.1), properly
rescaled as in Section 2.2. Respectively, consider the weak solution Xc to the equation (1.4).
Let α, β, χ, θ, β′ be given fixed exponents as in Proposition 6.5. Then there exists a coupling
(Xδ, Xc)δ>0, such that Xδ

0 = Xc
0 = 0 and for all t ∈ [0, T ], δ ∈ (0, κ̄′(ω)], h ∈ C3

L we have∣∣Eω [h(Xc
t )]− Eω

[
h(Xδ

t )
]∣∣ ⩽ C1 exp

(
C2κ̄(ω)

4
α−β′

)
∥h∥C3

L

× (1 + κ̄(ω))2 ×
(
ρα,χ(Û

δ
1,W) + δ

β′(β′−β)

β′+β

)
. (6.23)

where C1, C2 are constants depending only on the exponents α, β, χ, θ, β′, T and κ̄(ω), κ̄′(ω)
are defined by (6.19), (6.20) respectively.

The corollary below completes the link between Theorem 1.3 and Theorem 6.6.

Corollary 6.7. Under the conditions of Theorem 6.6, Theorem 1.3 holds true. Namely for
h ∈ C3

L (with C3
L given in Definition 6.4) we have∣∣∣Eω

[
h(Xc

t )
]
− Eω

[
h(Xδ

t )
]∣∣∣ ⩽ Ch,T (ω) δ

ζ ,

with ζ = 9−
√
57

24
≃ 1

17
≃ 0.06.

Proof. To see how Theorem 6.6 implies Theorem 1.3, we first recall from (5.11) that

ρα,χ(Û
δ
1,W) ⩽ Ξ(ω)δτ ∀δ ∈ (0, 1]

for any given fixed τ ∈ (0, 1/2− α), where Ξ(ω) is an a.s. finite random variable depending
on α, χ, τ . As a result, the convergence rate in (6.23) is given by δζ with

ζ = sup
{
min

(
τ,Q(β, β′)

)
; (τ, β, β, α) ∈ D

}
, (6.24)
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where the quantity Q(β, β′) is given by

Q(β, β′) =
β′(β′ − β)

β′ + β
,

and where the domain D is defined by

D =

{
(τ, β, β′, α) ∈ R4 : 0 < τ <

1

2
− α,

1

3
< β < β′ < α <

1

2

}
.

The elementary and tedious procedure leading to the computation of (6.24) can be sum-
marized as follows. We first optimize the function Q, for which we start with a change of
variables β′ = α − k, β = α − k − ℓ. This leads to slightly simpler maximisation problem.
Namely we wish to find

A(α) ≡ sup{Q̂(k, ℓ) : k, ℓ ∈ D̂α},

where Q̂ and D̂α are respectively defined by

Q̂(k, ℓ) =
(α− k)ℓ

2(α− k)− ℓ
, and D̂α =

{
(k, ℓ) ∈ R2

+ : k + ℓ ≤ α− 1

3

}
.

Now an analysis of ∇Q̂ reveals that the supremum of Q̂ is attained on the boundary of D̂α.
Looking at the values of Q̂ on the boundary, we deduce that the supremum is in fact reached
at (k, ℓ) = (0, α− 1/3). hence

A(α) = Q̂
(
0, α− 1

3

)
=
α
(
α− 1

3

)
α + 1

3

.

Plugging this information back into (6.24), we thus get

ζ = max
{
min

(
τ,A(α)

)
: 0 < τ <

1

2
− α,

1

3
< α <

1

2

}
. (6.25)

Then one can easily see that the maximum in (6.25) is obtained for α∗ such that 1/2−α∗ =
A(α∗). This is given by α∗ = (3 +

√
57)/24 ≈ 0.42. The corresponding value of ζ is

ζ =
9−

√
57

24
≈ 0.06.

This finishes the proof. □

Proof of Theorem 6.6. This is a rather straightforward corollary of Proposition 6.5. Indeed,
it is enough to consider t = T . Then with f0 = h and g = 0 we have

Eω[h(Xc
T )] = v(0), and Eω[h(Xδ

T )] = ṽδ(0).

According to the definition of the controlled distance dÛδ
1,W

(ṽδ, v), we have∣∣Eω[h(Xc
T )]− Eω[h(Xδ

T )]
∣∣ = ∣∣ṽδ(0)− v(0)

∣∣ ⩽ Eθ,λ(a, T )× dÛδ
1,W

(ṽδ, v).

Note that the above estimate holds for all a > 0 (since 0 ∈ [−a, a]) and we can essentially
take a = 0. This makes Eθ,λ(a, T ) = eλT . With the choice of λ given by (6.22), it follows
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from Proposition 6.5 that∣∣Eω[h(Xc
T )]− Eω[h(Xδ

T )]
∣∣ ⩽ eλT × C1e

C2λ

(
∥h∥C3

L
δβ + (1 + κ̄(ω))

(
ρα,χ(Û

δ
1,W) + δ

β′(β′−β)

β′+β

))
⩽ C3e

C4κ̄(ω)
4

α−β′
(1 + κ̄(ω) + ∥h∥C3

L
)

(
ρα,χ(Û

δ
1,W) + δ

β′(β′−β)

β′+β

)
.

This completes the proof of Theorem 6.6. □

6.2. Preliminary notions: discrete controlled rough paths. In this section we intro-
duce some notation on discrete rough paths which will be useful in order to handle the
convergence results outlined in Section 6.1. We start by introducing some space-time parti-
tions. Namely for a given time horizon T , a generic partition Pt will be of the form

Pt = {0 = t0 < t1 < · · · < tN−1 < tN = T}.
Similarly, if a ∈ R+ a generic partition of [−a, a] can be written as

Px = {−a = x0 < x1 < · · · < xN = a}.
Define ∆P

T ≜ {(s, t) : s ⩽ t, s, t ∈ P} and ∆P
a accordingly. Given (s, t) ∈ ∆P

T , we set
Js, tK ≜ [s, t] ∩ P . Given the above partitions, we will define discrete Hölder norms similarly
to (3.19) or (3.25). As an example we set

∥f∥Pt,Pa

α,β = sup

{
|fs′(x′)− fs(x)|

|s′ − s|α + |x′ − x|β
; s, s′ ∈ Pt, x, x′ ∈ Px, (s, x) ̸= (s′, x′)

}
. (6.26)

Of course the quantity above is always finite, since P is a finite set. We will omit the
superscript P if the context is clearly discrete. One of our main tasks will be to bound
quantities like (6.26) uniformly over a sequence of partitions whose mesh goes to 0.

Assumption 6.8. As in Section 2.2, we are working here on uniform grids constructed
according to a parabolic scaling. Namely for a discretization parameter δ we consider tj = jδ2

and xk ∈ δZ.

We now recall some notation concerning discrete rough paths. In the sequel we consider
two Hölder exponents α, β such that 1/3 < β < α ⩽ 1/2. Next we introduce a discrete
augmented path taking values in R.

Definition 6.9. Let X be a path defined on Px. For s, t ∈ ∆Px
a we set

X1(x, y) := X(y)−X(x), and X2(x, y) :=
1

2
(X(y)−X(x))2 .

The norms ∥X1∥[−a,a]α and ∥X2∥[−a,a]2α are defined similarly to (3.19). Then the 1D discrete
rough path above X is given by

X(x, y) = (1, X1(x, y), X2(x, y)), for (x, y) ∈ ∆P
a .

We also mimic expression (3.23) for controlled paths. Namely for a path Yx = (Y, ∂xY )
defined on Px, we set

RYx := Y (y)− Y (x)− ∂xY (x)X1(x, y). (6.27)
Then quantities of interest in order to describe Y as a discrete controlled path will be ∥∂xY ∥Px

β

and ∥RYx∥Px
2β .
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Next, we turn to a definition of discrete spatial rough integrals suited to our context.

Definition 6.10. Let Yx = (Y, ∂xY ) be a discrete controlled path defined on a grid Px.
Consider a, b ∈ R with a < b. The discrete rough integral of Y with respect to X is a
discrete rough path Z = (Z, ∂xZ), where for (x, y) in ∆P

a,b we have

Z(x, y) ≜
∫ y

x

Y(u)dX(u) :=
∑

Ju,vK∈Jx,yK

(
Y (u)X1(u, v) + ∂xY (u)X2(u, v)

)
, x, y ∈ Px. (6.28)

and ∂xZ(x) = Y (x). Observe that in (6.28) the notation Ju, vK ∈ Jx, yK stands for

{(tk, tk+1) ∈ P2
x;x ⩽ tk < y} (6.29)

In order to bound discrete integrals like (6.28) we will resort to a discrete sewing lemma
borrowed from [26, Lemma 2.5]. This lemma is recalled here for the sake of completeness.

Lemma 6.11. Let R(x, y) be an increment defined on the grid Px = {x0 < x1 < · · · < xn}.
We assume that R(xi, xi+1) = 0 for all i = 0, . . . , n− 1. We also suppose that ∥δR∥Px

µ <∞
for a given µ > 1. Then there exists a constant cµ such that

∥R∥Px
µ ⩽ cµ∥δR∥Px

µ

We now state a basic upper bound for discrete spatial integrals which will be used in
subsequent computations.

Proposition 6.12. Let X be a discrete rough path as introduced in Definition 6.9. Consider
a controlled path Y whose remainder is given by (6.27). The corresponding integral

∫
YdX

is expressed in Definition 6.10. We assume that for 1/3 < β < α ⩽ 1/2 we have

∥X1∥α + ∥X2∥2α + ∥∂xY ∥β + ∥RYx∥2β ⩽M,

where we drop the superscripts [−a, a] in the norms above for notational sake. Then for
(x, y) ∈ ∆p

a the following estimate holds true:∣∣∣ ∫ y

x

Y(u)dX(u)− Y (x)X1(x, y)− ∂XY (x)X2(x, y)
∣∣∣

⩽ Cα,β
(
∥∂XY ∥β · ∥X2∥2α · |y − x|2α+β + ∥RYx∥2β · ∥X1∥α · |y − x|α+2β

)
, (6.30)

where the constant Cα,β depends only on α, β only.

Proof. We define two increments Ξ and IΞ on Px in the following way:

Ξ(x, y) ≜ Y (x)X1(x, y) + ∂XY (x)X2(x, y),

IΞ(x, y) ≜
∑

Ju,vK∈Jx,yK

(
Y (u)X1(u, v) + ∂XY (u)X2(u, v)

)
=

∫ y

x

Y(u)dX(u).

Then the left hand side of (6.30) can be written as a remainder increment R of the form

R(x, y) ≜ IΞ(x, y)− Ξ(x, y).

In this context, recall that δR is defined as a function of three variables, by

δR(x, u, y) ≜ R(x, y)−R(x, u)−R(u, y), x < u < y ∈ ∆Px .
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Using (6.27), it is plain algebra to check that

|δR(x, u, y)| = |δΞ(x, u, y)| ⩽ ∥RYx∥2β · ∥X1∥α · |y − x|α+2β + ∥Y ∥β · ∥X2∥2α · |y − x|2α+β.

In addition, note that R(x, y) = 0 when x, y are adjacent partition points. Hence a direct
application of Lemma 6.11 yields

|R(x, y)| ⩽ Kα+2β∥RYx∥2β∥X1∥α · (y − x)α+2β +K2α+β∥Y ∥β∥X2∥2α · (y − x)2α+β.

Our claim (6.30) thus follows. □

In the random walk setting, rough integrals will be approximated by weighted sums of
trapezoidal type. Below we state a proposition bounding this kind of sum.

Proposition 6.13. Under the same conditions as in Proposition 6.12, for (x, y) ∈ ∆P
a,b we

set

I(x, y) ≜
∑

Ju,vK∈Jx,yK

1

2
(Y (u) + Y (v)) ·X1(u, v). (6.31)

Then I(x, y) enjoys the same property as
∫
Y(u)dX(u) in Proposition 6.12. Namely we have∣∣I(x, y)− Y (x)X1(x, y)− ∂XY (x)X2(x, y)
∣∣

⩽ Cα,β
(
∥∂XY ∥β · ∥X2∥2α · |y − x|2α+β + ∥RYx∥2β · ∥X1∥α · |y − x|α+2β

)
. (6.32)

Proof. Starting from the expression (6.31) for I(x, y), some elementary algebraic manipula-
tions show that

I(x, y) =
∑

Ju,vK∈Jx,yK

Y (u)X1(u, v) +
1

2
δY (u, v)X1(u, v).

Hence plugging the decomposition (6.27) in the expression above, we get

I(x, y) =
∑

Ju,vK∈Jx,yK

Y (u)X1(u, v) +
1

2

(
∂XY (u)X1(u, v) +RYx(u, v)

)
X1(u, v).

Recalling the definition (6.28) of
∫ y
x
Y(u)dX(u) it is thus readily seen that

I(x, y) =
∫ y

x

Y(u)dX(u) + J (x, y), , (6.33)

where the term J (x, y) is given by

J (x, y) :=
1

2

∑
Ju,vK∈Jx,yK

RYx(u, v)X1(u, v).

Now the term
∫ y
x
Y(u)dX(u) in (6.33) is upper bounded thanks to (6.30). Moreover, since

∥RYx∥2β + ∥X1∥α <∞ and 2β + α > 1, we easily get the following estimate for the term J
in (6.33): ∣∣J (x, y)

∣∣ ⩽ Cα,β ∥RYx∥2β · ∥X1∥α · |y − x|α+2β.

Plugging this estimate and (6.30) into (6.33), we have proved our claim (6.32). □
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6.3. Developing Step 1: uniform estimate on ṽδ. In this section, we will give a
bound on ṽδ uniformly in δ. Otherwise stated we will achieve (6.17) in Step 1 as described in
Section 6.1. The key ingredient for this step is the following uniform estimate on the discrete
rough path vδ with respect to the discrete metric on the grid.

Proposition 6.14. Consider a finite time horizon T and θ > 1. The exponents α, β, χ
satisfy (3.20) and we set γ = α−β

4
. Recall that Û δ

1 is defined in Theorem 5.3 and the quantity
κα,χ(Û

δ
1) is defined similarly to (3.21), albeit on a discrete grid. The norm Θθ,λ given in

(3.27) is also assumed to be restricted to a discrete setting. The norm ∥ · ∥C3
L

is defined in
Definition 6.4. Let us also set

κ̂(ω) ≜ sup
δ∈(0,1]

κα,χ(Û
δ
1), (6.34)

which is an a.s. finite quenched random variable. Then there exist universal constants C1, C2

depending only on the exponents and T , such that the discrete controlled process vδ defined
by (6.1) satisfies

Θθ,λ(vδ) ⩽ C1

(
∥f0∥C3

L
+ ∥g∥C3

L

)
,

provided that λ is chosen to satisfy

C2λ
−α−β

4 κ̂(ω) =
1

4
(6.35)

and δ ∈ (0, κ̂′(ω)] where

κ̂′(ω) ≜ min
{
(4C2)

−2 , (4C2)
− 2

α−β · κ̂(ω)−
1

α−β
}
. (6.36)

Proof. From the Ū δ-decomposition (5.3), we can write the discrete equation (6.1) for vδ as

vδtk(x) = ηδtk(x)−
1

2

(
(Mδ

1 +Mδ
2)v

δ
)
tk
(x), (6.37)

where

(Mδ
iv
δ)tk(x) ≜ δ3

k−1∑
j=0

∑
y∈δZ

∇2,δ
x p̂δtj(x− y)I i,δtk−1−tj(x, y) (i = 1, 2) (6.38)

and

I i,δtk−1−tj(x, y) ≜
y∑

z=x

1

2

(
vδt (z) + vδt (z − δ)

)
· Ū δ

i (z). (6.39)

As we explained in Lemma 5.2, Û δ
1 is regarded as a discrete rough path approximation of W

and Û δ
2 is a remainder. Correspondingly, the estimation of Mδ

1v
δ is a discrete equivalent of

Proposition 4.6. Most of the computations are adaptations of what we did in Section 4.3 for
the proof of Proposition 4.6 and we will not repeat all of them for the sake of conciseness.
We will thus focus on proper adaptations of Lemmas 4.2, 4.3 and 4.7 (the uniform estimate).
As far as the term Mδ

2v
δ is concerned, let us mention at this point that its estimation relies

on rather trivial arguments. They hinge on the fact that

sup
z∈Z

|Ū δ
2 (z)| ≡ cδ ≲ δ3/2 . (6.40)
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Therefore the quantities Iδtk−1−tj(x, y) have to be considered as mere discrete Lebesgue inte-
grals. In the sequel we will also consider a family of constants c′δ given by

c′δ ≡
cδ
δ

= O(δ1/2), (6.41)

where the last identity stems from (6.40). We now divide our proof in several steps.

Step 1: Extension of Lemma 4.2. Notice that we are considering here discrete equivalents
of the quantities Θθ,λ given in Definition 3.9. The corresponding weighted space of discrete
controlled path will be denoted by Bδ,θ,λ. Let us now consider an element vδ in Bδ,θ,λ and set

κ ≜ κα,χ(Û
δ
1), Θ ≜ Θθ,λ(vδ), E ≜ Eθ,λ(a, t).

Also recall that the quantity D is defined by (4.3) and I1,δ
t (x, y) is given by (6.39). Then we

claim that∣∣∣I1,δ
t (x, y)− vδt (x)X

1(x, y)
∣∣∣ ⩽ Cβ κΘE λ

γ D(a, t, y − x) and∣∣∣I1,δ
t (x, y)

∣∣∣ ⩽ Cβ κΘE λ
γ (aχ|y − x|α +D(a, t, y − x)) . (6.42)

With Proposition 6.13 in hand, the proof of (6.42) is identical to the proof of (4.4)-(4.5) and
omitted here for the sake of conciseness.

Step 2: Extension of Lemmas 4.3 and 4.7. To estimate Mδ
1v
δ, we divide the summation

(6.38) into the two parts: j > 0 and j = 0.

(i) The j > 0 part is defined by

(M1,δ
1 vδ)tk(x) ≜ δ3

k−1∑
j=1

∑
y∈δZ

∇2,δ
x p̂δtj(x− y)I1,δ

tk−1−tj(x, y).

By applying the discrete heat kernel estimate (2.80) together with a change of variables
y = x+ δ⌊δ−1t

1/2
j w⌋, we have

∣∣(M1,δ
1 vδ)tk(x)

∣∣ ⩽ C1δ
2

k−1∑
j=1

(δt
−1/2
j )

∑
w∈(δt−1/2

j )·Z

t−1
j e−C2|w|2Aδ

x,tj ,w,tk
, (6.43)

where
Aδ
x,tj ,w,tk

≜
∣∣I1,δ
tk−1−tj(x, x+ δ⌊δ−1

√
tjw⌋)

∣∣.
The right hand side of (6.43) resembles its continuous counterpart (4.7). As a result, we
consider a stochastic integral term similar to (4.7) in our discrete context. For x ∈ [−a, a]
and our time horizon T , set ρ ≜ a + T 1/2|w|. Then along the same lines as for (4.13) and
invoking Proposition 6.13, we get

t−1
j Aδ

x,tj ,w,tk
⩽ cβκΘλ

γE(a, tk)Pu(w)e
θ(1+T )T 1/2|w|e−(λ+θρ)tjϕ1(ρ, tj),

where we recall that Pu(w) designates an arbitrary polynomial in w and where the function
ϕi, i = 1, 2, is defined by (4.14) (in the current estimate we simply take γ1 = γ2 = 0 and
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thus ϕ1 = ϕ2). By substituting the above inequality into (6.43), we obtain that

∣∣(M1,δ
1 vδ)tk(x)

∣∣ ⩽ C3κΘλ
γE(a, tk) · δ2

k−1∑
j=1

δt
−1/2
j

∑
w∈(δt−1/2

j )·Z

e−C3|w|2e−(λ+θρ)tjϕ1(ρ, tj). (6.44)

Due to the explicit form of ϕ1(ρ, tj), a simple monotonicity consideration (replacing each
grid point w = (δt

−1/2
j ) · l with a generic point in the interval [(δt−1/2

j ) · l, (δt−1/2
j ) · (l + 1)])

shows that the discrete spatial w-integral in (6.44) is uniformly bounded by its continuous
counterpart, namely we have

δt
−1/2
j

∑
w∈(δt−1/2

j )·Z

e−C3|w|2e−(λ+θρ)tjϕ1(ρ, tj) ⩽ C4

∫
R
e−C3|w|2e−(λ+θρ)tjϕ1(ρ, tj)dw.

It follows that∣∣(M1,δ
1 vδ)tk(x)

∣∣ ⩽ C5κΘλ
γE(a, tk) ·

∫
R
e−C3|w|2dw × δ2

k−1∑
j=1

e−(λ+θρ)tjϕ1(ρ, tj).

Note that the discrete tj-integral on the right hand side is the discrete counterpart of the
quantity (4.17) (with τ1 = tk). Now we can perform and estimate the discrete tj-integral in
exactly the same way as in the proof of (4.19) to conclude that

δ2
k−1∑
j=1

e−(λ+θρ)tjϕ1(ρ, tj) ⩽ C6λ
β−α
2 .

Therefore, we arrive at the following estimate:∣∣(M1,δ
1 vδ)tk(x)

∣∣ ⩽ C7κΘEλ
−α−β

4 . (6.45)

(ii) The j = 0 part in the summation (6.38) is defined by

(M0,δ
1 vδ)tk(x) ≜ δ3

∑
y∈δZ

∇2,δ
x p̂δ0(x− y)I1,δ

tk−1
(x, y).

This is essentially the quantity A1
t (x) defined in (6.78) below. By using the discrete heat

kernel estimate (2.81), exactly the same argument leading to the estimate (6.87) gives that∣∣(M0,δ
1 vδ)tk(x)

∣∣ ⩽ C8κΘE(a, tk)× λ
α−β
4 δα−2χ. (6.46)

Gathering the estimates (6.45) and (6.46), one can thus conclude that∣∣(M1v
δ)tk(x)

∣∣ ≤ CκΘE
(
λ−

α−β
4 + λ

α−β
4 δα−2χ

)
. (6.47)

Step 3: Estimating Mδ
2v
δ. By the definition (6.38) of Mδ

2v
δ, we can write it as

(Mδ
2v
δ)tk(x) = δ3

k−1∑
j=0

∑
y∈δZ

∇2,δ
x p̂δtj(x− y) ·

(
δ

y∑
z=x

vδtk−1−tj(z) + vδtk−1−tj(z − δ)

2

)
· c′δ, (6.48)
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where we recall that c′δ is defined by (6.41), and that c′δ = O(δ1/2). Here we view Mδ
2v
δ as

a discrete controlled path with respect to Ûδ
1 with zero Gubinelli derivative. Viewed as a

discrete Lebesgue integral, it is easily seen that∣∣∣∣∣δ
y∑

z=x

vδtk−1−tj(z) + vδtk−1−tj(z − δ)

2

∣∣∣∣∣ ⩽ |y − x| · ∥v∥[0,tk]×[(−|x|∨|y|,|x|∨|y|)]
∞ . (6.49)

We now estimate (Mδ
2v
δ)tk(x) (for tk ∈ J0, T K and x ∈ J−a, aK) by decomposing the j-

summation (6.48) into j = 0 and 1 ⩽ j ⩽ k − 1 as before (since the two parts have different
heat kernel estimates). Firstly, according to the estimate (2.81) for ∇2,δ

x p̂δ0 as well as (6.49),
the “j = 0” term in (6.48) is magnified by

δ3
∑

y∈δZ:|y−x|⩽δ

C

δ3
× δΘE(a, tk)× c′δ ⩽ Cδ3/2ΘE(a, tk).

Similarly, by applying (2.80) together with a change of variables y = x + δ⌊δ−1t
1/2
j w⌋, the

“j > 0” term is estimated as

C1c
′
δ × δ2

k−1∑
j=1

1
√
tj

 δ
√
tj

∑
w∈(t−1/2

j δ)·Z

|w|e−C2|w|2eC3|w|

×ΘE(a, tk).

The normalised w-summation inside the bracket, resembled as a discrete approximation of
the continuous integral

∫
R |w|e

−C2|w|2+C3|w|dw, is uniformly bounded. The normalised j-
summation δ2

∑k−1
j=1 1/

√
tj, resembled as a discrete approximation of

∫ t
0
ds√
s
, is also uniformly

bounded. As a consequence, we arrive at the estimate∣∣(Mδ
2v
δ)tk(x)

∣∣ ⩽ C
√
δΘE(a, tk). (6.50)

Step 4: Conclusion. As mentioned above, we have focused on proper generalizations of
Lemmas 4.2, 4.3 and 4.7 for the sake of conciseness. The estimations on the time variation,
space variation and remainder terms for Mδ

iv
δ (i = 1, 2) can be established in the same lines

as Lemmas 4.8, 4.9, 4.10 in the continuous case with the aid of the uniform discrete heat
kernel estimates (2.80). Note that the j = 0 part is always handled separately as before by
using (2.81) instead. This will result in a factor of λ

α−β
4 δα−β (cf. (6.116), the second last

term of (6.137) and (6.165) below, respectively). The main estimates, which are similar to
(6.47)-(6.50) are summarised as follows:

(ii) Time variation estimate:{∣∣(Mδ
1v
δ)t2(x)− (Mδ

1v
δ)t1(x)

∣∣ ⩽ C
(
λ−

α−β
4 + λ

α−β
4 δα−β

)
· κΘE(a, t2)aβ/2 · |t2 − t1|β/2;∣∣(Mδ

2v
δ)t2(x)− (Mδ

2v
δ)t1(x)

∣∣ ⩽ C
√
δ ·ΘE(a, t2) · |t2 − t1|β/2,

(iii) Space variation estimate:{∣∣(Mδ
2v
δ)t(x

′)− (Mδ
2v
δ)t(x)

∣∣ ⩽ C
(
λ−

α−β
4 + λ

α−β
4 δα−β

)
· κΘE(a, t)aβ/2 · |x′ − x|β;∣∣(Mδ

2v
δ)t(x

′)− (Mδ
2v
δ)t(x)

∣∣ ⩽ C
√
δ ·ΘE(a, t) · |x′ − x|β,
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(iv) Remainder estimate:
∣∣RMδ

1v
δ

t (x, x′)
∣∣ ⩽ C

(
1 + λ

α−β
4 δα−β

)
· κΘE(a, t)Q(a, t) · |x′ − x|2β;∣∣RMδ

2v
δ

t (x, x′)
∣∣ = ∣∣(Mδ

2v
δ)t(x

′)− (Mδ
2v
δ)t(x)− 0 · Û δ(x, x′)

∣∣
⩽ C

√
δ ·ΘE(a, t)t−β/2 · |x′ − x|2β ⩽ C

√
δ ·ΘE(a, t)Q(a, t) · |x′ − x|2β.

As a consequence, we arrive at the desired contraction estimate:

Θθ,λ(Mδ
1v
δ +Mδ

2v
δ) ⩽ C

(
λ−

α−β
4 κ+ λ

α−β
4 δα−β +

√
δ
)
Θθ,λ(vδ).

Now we can choose λ to satisfy

Cλ−
α−β
4 κ̂(ω) =

1

4
where κ̂(ω) is defined by (6.34) and then require that

0 < δ < min
{( 1

4C

)2

,

(
1

4C

) 2
α−β

κ̂(ω)−
1

α−β
}
.

This ensures that
Cλ−

α−β
4 κ+ Cλ

α−β
4 δα−β + C

√
δ ⩽

3

4
,

which gives the desired contraction property of Mδ and thus concludes our proof. □

The result of Proposition 6.14 easily leads to the following uniform estimate on the linearly
interpolated path ṽδ (cf. (6.10)).

Lemma 6.15. Let α, β, χ, θ be given as in Proposition 6.14, with θ > 2. Recall that Û δ
1 is

defined in (5.3) and Theorem 5.3, and that κα,χ(Ûδ
1) is the α-Hölder continuous rough path

norm of Ûδ
1. In addition, Θθ,λ(ṽδ) is the β-Hölder continuous rough path norm of ṽδ with

respect to Ûδ
1. Then there exist universal constants C1, C2 depending only on the exponents

and T , such that
Θθ,λ(ṽδ) ⩽ C1e

λδ2
(
∥f0∥C3

L
+ ∥g∥C3

L

)
for all δ ∈ (0, κ̂′(ω)], where λ > 0 is chosen to satisfy (6.35) and κ̂′(ω) is defined by (6.36).

Proof. According to the definition of Θθ,λ, we need to estimate four terms: uniform norm,
space-variation, time-variation and the remainder. Let c be a universal upper bound of the
discrete rough path norm Θθ/2,λ(vδ) given by Proposition 6.14.

We first consider the uniform norm estimate. Consider t ∈ [0, T ] and x ∈ [−a, a]. We
assume that

t1 ⩽ t < t2, and x1 ⩽ x < x2, (6.51)
for t1, t2 and x1, x2 adjacent points on the grid δ2N × δZ. Since we have chosen θ > 2, one
can apply Proposition 6.14 with θ := θ/2. This yields

|ṽδt (x)| ⩽ max
{
|vδti(xj)| : i, j = 1, 2

}
⩽ c

(
∥f0∥C3

L
+ ∥g∥C3

L

)
· Eθ/2,λ(a+ δ, t2). (6.52)

Furthermore, since we are working with a small δ < 1, it is readily checked from (3.26) that

Eθ/2,λ(a+ δ, t2) = eλt2+θ(a+δ)/2+θat2/2 ⩽ Cθe
λδ2Eθ,λ(a, t). (6.53)
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Reporting (6.53) into (6.52) we end up with the following uniform bound, valid for t ∈ [0, T ]
and x ∈ [−a, a]:

Eθ,λ(a, t)−1|ṽδt (x)| ⩽ cCθe
λδ2
(
∥f0∥C3

L
+ ∥g∥C3

L

)
.

Next, we consider the space variation estimate. To this aim, we pick t ∈ [0, T ] and
x, x′ ∈ [−a, a]. Similarly to (6.51), we assume for now that

t1 ⩽ t < t2, and x1 ⩽ x, x′ < x2 ,

where t1, t2 and x1, x2 are adjacent grid points. By the definition (6.10) of ṽδ it is clear that

ṽδt (x
′)− ṽδt (x) =

x− x′

x2 − x1

(
(1− µ)vδt1(x1, x2) + µvδt2(x1, x2)

)
,

where µ ≜ t−t1
δ2

and vδti(x1, x2) ≜ vδti(x2) − vδti(x1). Along the same lines as for the uniform
bound above, we invoke Proposition 6.14 with θ := θ/2. We get

vδti(x1, x2) ⩽ c
(
∥f0∥C3

L
+ ∥g∥C3

L

)
· Eθ/2,λ(a+ δ, ti)λ

α−β
4 aβ/2|x2 − x1|β.

It follows from (6.53) that∣∣ṽδt (x′)− ṽδt (x)
∣∣ ≲ (∥f0∥C3

L
+ ∥g∥C3

L

)
eλδ

2 ·
∣∣ x− x′

x2 − x1

∣∣ · Eθ,λ(a, t) · λ
α−β
4 aβ/2 · |x2 − x1|β

⩽
(
∥f0∥C3

L
+ ∥g∥C3

L

)
eλδ

2 · Eθ,λ(a, t) · λ
α−β
4 aβ/2 · |x′ − x|β, (6.54)

which is the desired estimate. For general x < x′, let x1 (respectively, x2) be the smallest
(respectively, largest) grid point that is larger than x (respectively, smaller than x′). By
considering the decomposition

ṽδt (x
′)− ṽδt (x) = ṽδt (x

′)− ṽδt (x2) + ṽδt (x2)− ṽδt (x1) + ṽδt (x1)− ṽδt (x),

we easily obtain the same type of estimate as in (6.54).
The time variation and remainder estimates are treated in a similar way. For the remain-

der, the extra point to note is that for t ∈ (t1, t2], we have t−β/21 ≲ t−β/2 if t ⩾ δ2, while in
the case of t < δ2 we do not need the term t

−β/2
1 due to our definition of ṽδt (cf. (6.10)). □

6.4. Developing Step 3: comparing Wδ and W. Recall that Wδ and W are respectively
defined by (6.14) and (6.15). This section is devoted to establish an estimate for the distance
between Wδ and W , as announced at the end of the Section 6.1. First in view of the Û δ-
decomposition introduced in (5.3)-(5.4), we write

Wδ
t (x) = W1,δ

t (x) +W2,δ
t (x),

where, for i = 1, 2 we have set

W i,δ
t (x) ≜

∫ t

0

∫
R
∇2,δ
x p̂δ⌊s⌋(⌊x− y⌋)

(∫ y

x

ṽδt−s(z)dÛ
δ
i (z)

)
dyds. (6.55)

From earlier discussions, it is natural to compare W1,δ with W and view W2,δ as a remainder.
Let us first handle this remainder term in the decomposition (6.55). We label this preliminary
step in a lemma.
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Lemma 6.16. For δ > 0 let W2,δ be the process defined by (6.55), where we recall that Ū δ
2

is defined by (5.4) and Û δ
2 is the linear interpolation of Ū δ

2 . We consider a set of parameters
α, β, χ, θ, λ, δ as in Proposition 6.14. Then there exists a constant C = Cα,β,χ,θ,λ,T such that
the norm of Û δ

2 as a process controlled by Û δ
1 satisfies

Θθ,λ

Ûδ
1

(W2,δ) ⩽ C
(
∥f0∥C3

L
+ ∥g∥C3

L

)√
δ, (6.56)

where the subscript Û δ
1 above means that we consider W2,δ as a process controlled by Û δ

1 .

Proof. The term W2,δ is very similar to Mδ
2v
δ in (6.48). Hence its analysis ressembles what

we did in Steps 4 and 5 for the proof of Proposition 6.14. Namely we consider W2,δ as a
controlled path with respect to Û δ

1 , with zero Gubinelli derivative. All the integrals have to
be treated as discrete Lebesgue integrals. With the aid of the uniform discrete heat kernel
bounds (2.80)-(2.81), we let the reader check the details leading to (6.56). □

With Lemma 6.16 in hand, in what follows we focus on developing the comparison between
W1,δ and W . Similar to the strategies for Proposition 4.6 and Proposition 6.14, and recalling
that dÛδ

1,W
(W1,δ,W) is defined similarly to (6.11), we will split the study of this quantity into

four parts: the uniform distance, the time variation distance, the space variation distance,
and the remainder distance. In what follows, to simplify notation we will omit all the
super/subscripts when writing the norms and distances. For instance, κ(Ûδ

1) = κα,χ(Û
δ
1).

From time to time, we will use “>” to denote an inequality up to a multiplicative constant
C that does not depend on δ, a, t, x, y. The value of the notation C (sometimes denoted as
Ci) may also differ from line to line.

6.4.1. The uniform distance estimate. In this subsection we mimic Lemma 4.7 and get a
uniform estimate for W1,δ −W .

Lemma 6.17. Recall that the exponents α, β, χ, θ, λ satisfy (3.20) and we set γ = α−β
4

. For
δ > 0, W1,δ and W are respectively defined by (6.14) and (6.15). Then, for any a ⩾ 1,
x ∈ [−a, a] and t ∈ (0, T ], we have∣∣W1,δ

t (x)−Wt(x)
∣∣

⩽ CE(a, t)λ−
α−β
4

(
κ(Ûδ

1)dÛδ
1,W

(ṽδ, v) + Θ(v)ρ(Ûδ
1,W) + κ(Ûδ

1)Θ(ṽδ)δr
)
, (6.57)

where E(a, t) is defined by (3.26), ρ(Ûδ
1,W) is defined by (5.9), r is an arbitrary number

that is less than α− 2χ and C is a positive constant depending only on α, β, T, r.

Before we prove Lemma 6.17, we will state some convergence estimates for the discrete
and continuous heat kernels p. We start with a uniform bound.

Lemma 6.18. Consider δ > 0, s ≥ δ2 and w ∈ R. Let p̂δ be the rescaled kernel from (2.72)
and p be the Gaussian kernel in (2.73). For notational sake we set (see Notation 6.3 for our
conventions on integer parts):

k ≜
⌊
√
sw⌋
δ

=

⌊√
sw

δ

⌋
Z
, and n ≜

⌊s⌋
δ2

=
⌊ s
δ2

⌋
N
. (6.58)
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Then the following uniform upper bound holds true for w ∈ R:∣∣∇2,δ
x p̂δδ2n(δk)

∣∣ ∨ ∣∣∣∣ 1δ3∇2
kpn(k)

∣∣∣∣ ⩽ C1

s3/2
e−C2w2

. (6.59)

In (6.59), ∇2,δ stands for the rescaled gradient given by (2.75) and ∇2
kpn(k) denotes the

second discrete gradient applied to the heat kernel pt in (2.73), that is

∇2
kpn(k) = pn(k + 1) + pn(k − 1)− 2pn(k). (6.60)

Remark 6.19. We are stating and proving Lemma 6.18 with the second order derivatives in
order to handle the most challenging context of interest for us. However, one can prove non
gradient estimates in the same way. Let us label the following one, which holds true under
the same conditions as for Lemma 6.18:

p̂δδ2n(δk) ⩽ e−C3w2

, (6.61)

where k and n are given in (6.58).

Proof of Lemma 6.18. We start with the following elementary observation, valid for s ≥ δ2

and w ∈ R:

s ⩾ δ2, w ∈ R =⇒

{
C1s ⩽ ⌊s⌋ ⩽ C2s,

C3e
−C4w2

⩽ e−C5(⌊
√
sw⌋/

√
⌊s⌋)2 ⩽ C6e

−C7w2
,

(6.62)

where the Ci’s are universal constants whose exact values are irrelevant. With (6.62) in hand,
plus recalling that ⌊

√
sw⌋ = δk and ⌊s⌋ = δ2n, we get that the estimate on ∇2,δ

x p̂δδ2n(δk)
in (6.59) follows directly from Proposition 2.26. Next we observe that according to (2.73)
we have

pn(k) =
1

(2πσ2n)1/2
exp

(
− k2

2σ2n

)
.

Furthermore, owing to (6.58) and setting

u ≜
⌊
√
sw⌋√
⌊s⌋

, and η ≜
δ√
⌊s⌋

=
1√
n
, (6.63)

we have
k2

n
=

⌊
√
sw⌋2

δ2
× δ2

⌊s⌋
= u2.

Hence for the quantity ∇2
kpn(k) defined by (6.60) it is readily checked that

1

δ3
∇2
kpn(k) =

1√
2πσ2⌊s⌋3/2

· 1

η2

(
e−

1
2σ2 (u+η)

2

+ e−
1

2σ2 (u−η)2 − 2e−
u2

2σ2

)
. (6.64)

We now bound the right hand side of (6.64). To this aim, observe that η ⩽ 1 since we have

assumed s ⩾ δ2. Hence using a second order Taylor approximation of the function e−
u2

2σ2 it
is easily seen that ∣∣∣∣ 1η2

(
e−

1
2σ2 (u+η)

2

+ e−
1

2σ2 (u−η)2 − 2e−
u2

2σ2

)∣∣∣∣ ⩽ C1e
−C2u2 . (6.65)

Plugging this estimate in (6.64) and invoking (6.62) our claim (6.59) is easily checked. □
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The next lemma quantifies the convergence of derivatives of the heat kernel.

Lemma 6.20. As in Lemma 6.18, we consider the Gaussian kernel given by (2.73) and the
discrete derivative ∇2

k in (6.60). The notation k and n in (6.58) prevails. Then the following
bound holds true for all s ≥ δ2 and w ∈ R:∣∣∣ 1

δ3
∇2
kpn(k)−

1

s3/2
∂2xxp1(w)

∣∣∣ ≲ δ√
s
· e

−Cw2

s3/2
.

Proof. We start from the expression (6.64) for ∇2
kpn(k), and we substract ∂2xxp1(u) (recall that

u is introduced in (6.63)). Similarly to (6.65), we introduce a third order taylor expansion
(as opposed to the second order expansion alluded to in Lemma 6.18). We get that∣∣∣∣ 1δ3∇2

kpn(k)−
1

⌊s⌋3/2
∂2xxp1(u)

∣∣∣∣ ≲ δ√
s

e−Cw
2

s3/2
, (6.66)

where we have used the relations in (6.62). Next, we evaluate the difference

Qs,w =
1

s3/2
∂2xxp1(w)−

1

⌊s⌋3/2
∂2xxp1(u), (6.67)

where we recall again that u = ⌊
√
sw⌋/

√
⌊s⌋. To this aim we define two interpolating paths

of the form

s(r) ≜ (1− r)s+ r⌊s⌋, and x(r) ≜ (1− r)
⌊
√
sw⌋√
⌊s⌋

+ rw = (1− r)u+ rw.

Differentiating along those paths we have

Qs,w = −Q1
s,w +Q2

s,w, (6.68)

where the two terms in (6.68) are respectively defined by

Q1
s,w =

3

2

∫ 1

0

s(r)−5/2∂2xxp1(x(r))dr · (s− ⌊s⌋)

Q2
s,w =

∫ 1

0

s(r)−3/2∂3xp1(x(r))dr · (w − u) .

For the term Q1
s,w above, we bound s(r)−5/2 by s−5/2, the kernel ∂3xp1(w) by e−Cw2 and s−⌊s⌋

by δ2. This yields

Q1
s,w ≲

δ2

s5/2
e−Cw

2

.

For the term Q2
s,w in (6.68), we first note that∣∣∣⌊√sw⌋√

⌊s⌋
− w

∣∣∣ ⩽
|⌊
√
sw⌋ −

√
sw|√

⌊s⌋
+

|w| · |
√
s−

√
⌊s⌋|√

⌊s⌋

⩽
δ√
⌊s⌋

+ |w| ·

∣∣∣∣∣
(
1 +

s− ⌊s⌋
⌊s⌋

)1/2

− 1

∣∣∣∣∣ ⩽ δ√
⌊s⌋

+
|w|
2

· δ
2

⌊s⌋
.
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As a result, bounding s(r)−3/2 and ∂3xp1 as for Q1
s,w, we get

Q2
s,w ≲

(
δ√
⌊s⌋

+
|w|
2

· δ
2

⌊s⌋

)
e−Cw

2

s3/2
.

Combining the estimates for Q1
s,w and Q2

s,w and recalling the decomposition (6.68), we have
thus obtained

Qs,w ≲
δ√
s

e−Cw
2

s3/2
. (6.69)

Eventually combining (6.66), (6.67) and (6.69), this finishes the proof of our lemma. □

We now proceed to prove Lemma 6.17.

Proof of Lemma 6.17. For t ∈ [0, T ] and x ∈ [−, a, a] decompose the difference W1,δ
t (x) −

Wt(x) as
W1,δ

t (x)−Wt(x) = K1
t (x) +K2

t (x), (6.70)
where K1

t (x) and K2
t (x) are given by

K1
t (x) ≜

∫ t

0

∫
R

(
∇2,δ
x p̂δ⌊s⌋(⌊x− y⌋)− ∂2xxps(x− y)

)
I1,δ
t−s(x, y)dyds, (6.71)

K2
t (x) ≜

∫ t

0

∫
R
∂2xxps(x− y)

(
I1,δ
t−s(x, y)− It−s(x, y)

)
dyds, (6.72)

and where we recall that

I1,δ
t−s(x, y) ≜

∫ y

x

ṽδt−s(z)dÛ
δ
1(z), It−s(x, y) ≜

∫ y

x

vt−s(z)dW (z).

With this decomposition in hand, we now divide our estimate (6.57) in several steps.

Step 1: estimate for K2
t (x). For the term K2

t (x) in (6.72) we easily get that, for a ⩾ 1,
t ∈ (0, T ] and x ∈ [−, a, a] we have

|K2
t (x)| ⩽ CE(a, t)λ−

α−β
4

(
κ(Ûδ

1)dÛδ
1,W

(ṽδ, v) + Θ(v)ρ(Ûδ
1,W)

)
. (6.73)

Indeed, the patient reader can check that (6.73) is an easy variation of Lemma 4.3 and
Lemma 4.7.

Step2 : decomposition for K1
t (x). In order to estimate K1

t (x) we will decompose this integral
into small and large time domain. Namely, we write

K1
t (x) = K11

t (x) +K12
t (x), (6.74)

where

K11
t (x) =

∫ t∧δ2

0

∫
R

(
∇2,δ
x p̂δ⌊s⌋(⌊x− y⌋)− ∂2xxps(x− y)

)
I1,δ
t−s(x, y)dyds, (6.75)

and

K12
t (x) =

∫ t

t∧δ2

∫
R

(
∇2,δ
x p̂δ⌊s⌋(⌊x− y⌋)− ∂2xxps(x− y)

)
I1,δ
t−s(x, y)dyds. (6.76)
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We now bound K11 and K12 in two different ways. More specifically, for the small time
regime we shall rely on the fact that p̂δ and p average to small quantities, while in the large
time regime we will invoke the local central limit theorem for p̂δ.

Step 3: Small time estimates. For small times, that is when s ⩽ δ2, we will not use the
difference p̂δ − p. Therefore we simply decompose K11

t (x) into

K11
t (x) = A1

t (x) +A2
t (x), (6.77)

with

A1
t (x) =

∫ t∧δ2

0

∫
R

∣∣∇2,δ
x p̂δ0(⌊y⌋)

∣∣ · ∣∣I1,δ
t−s(x, x+ y)

∣∣dyds, (6.78)

A2
t (x) =

∫ t∧δ2

0

∫
R
s−1
∣∣∂2xxp1(w)∣∣ · ∣∣I1,δ

t−s(x, x+
√
sw)
∣∣dwds, (6.79)

where for A2
t (x) we have invoked our usual change of variable y =

√
sw.

We first estimate A1
t (x). This is based on the same kind of decomposition as in the proof of

Lemma 4.3 but requires different estimates since the spatial integral is no longer of Gaussian
type. More specifically, note that ∇2,δ

x p̂0(⌊y⌋) is supported on {y : |y| ⩽ δ}, and replace the
Gaussian bounds on the kernel p̂δ by the simplified version (2.81) of (2.80):∣∣∇2,δ

x p̂δ0(⌊y⌋)
∣∣ ≲ 1

δ3
1{|u|⩽δ}. (6.80)

We now bound the term I1,δ
t−s(x, x + y) in the right hand side of (6.78). Namely one gets,

similarly to (6.42),∣∣∣I1,δ
t−s(x, x+ y)

∣∣∣ = ∣∣∣ ∫ x+y

x

ṽδt−s(z)dÛ
δ
1(z)

∣∣∣
⩽ Cκ(Ûδ

1)Θ(ṽδ)λ
α−β
4 E(a, t)e−(λ+θ(a+|y|))s ×

(
(a+ |y|)χ|y|α + (a+ |y|)2χ|y|2α

+(a+ |y|)2χ+β/2|y|2α+β + (a+ |y|)2χ+β/2|y|α+2β + (a+ |y|)2χ(t− s)−β/2|y|α+2β
)
. (6.81)

Applying this inequality to (6.78), we obtain a relation of the form

A1
t (x) ⩽ κ(Ûδ

1)Θ(ṽδ)λ
α−β
4 E(a, t)

5∑
i=1

A1i
t , (6.82)

and the terms A1i
t have to be estimated separately. For the sake of conciseness we will just

focus on A11
t and A15

t in the sequel.
With (6.81) in hand, the expression we have obtained for A11

t is

A11
t =

∫ t∧δ2

0

∫
R

∣∣∇2,δ
x p̂δ0(⌊y⌋)

∣∣ · e−(λ+θ(a+|y|))s(a+ |y|)χ|y|αdyds.

Hence owing to (6.80), the fact that p̂δ0 is supported in [−δ, δ] and the assumption t ⩽ δ2, we
get

A11
t ≲

1

δ3

∫
{y:|y|⩽δ}

(a+ |y|)χ|y|αdy
∫ δ2

0

e−(λ+θ(a+|y|))sds. (6.83)



RANDOM WALKS IN RANDOM ENVIRONMENT 87

Next in order to eliminate the factor (a + |y|)χ above, we apply Hölder’s inequality with
p = χ−1 and q = (1− χ)−1 to the time integral. This yields∫ δ2

0

e−(λ+θ(a+|y|))sds ⩽

(∫ δ2

0

e−p(λ+θ(a+|y|))sds

)1/p

·

(∫ δ2

0

1ds

)1/q

≲
δ2(1−χ)

(λ+ θ(a+ |y|))χ
.

It follows that

A11
t ≲

1

δ3

∫
{y:|y|⩽δ}

(a+ |y|)χ|y|αδ2(1−χ)

(λ+ θ(a+ |y|))χ
dy ≲

1

δ3
· δ2(1−χ) · δα+1 = δα−2χ. (6.84)

Referring to our decomposition (6.82), let us now analyze the term A15
t . According to (6.81)

we have

A15
t =

∫ t∧δ2

0

∫
R

∣∣∇2,δ
x p̂δ0(⌊y⌋)

∣∣e−(λ+θ(a+|y|))s(a+ |y|)2χ(t− s)−β/2|y|α+2βdyds.

We can thus resort to inequality (4.26) and (6.80) in order to write

A15
t ≲

1

δ3

∫ t∧δ2

0

∫
{y:|y|⩽δ}

cc(λ+ θ(a+ |y|))−cs−c · (a+ |y|)2χ(t− s)−β/2|y|α+2βdyds.

By choosing c ≜ 2χ above, we obtain

A15
t ≲

1

δ3

∫
{y:|y|⩽δ}

|y|α+2βdy

∫ t∧δ2

0

s−2χ(t− s)−β/2ds.

Therefore the elementary change of variables s = (t ∧ δ2)v yields

A15
t ≲

1

δ3

∫
{y:|y|⩽δ}

|y|α+2βdy · (t ∧ δ2)1−2χ−β/2 ·
∫ 1

0

v−2χ(1− v)−β/2dv

≲
1

δ3
· δα+2β+1 · δ2(1−2χ−β/2) = δα+β−4χ. (6.85)

The estimates for the space-time integral of the other summands in (6.81) is similar to the
one for A11

t . We let the patient reader check that we obtain

A12
t ≲ δ2(α−2χ), A13

t ≲ δ2(α−2χ), A14
t ≲ δα+β−4χ, (6.86)

respectively. Summarizing our considerations on the terms A1i
t , we have obtained rela-

tions (6.84), (6.85), (6.86). Comparing the exponents of δ in those inequalities and recalling
that (3.20) imposes χ < β/2, it is clear that the dominant term is given by δα−2χ. Plugging
this information back into (6.82), we end up with

A1
t (x) ≲ κ(Ûδ

1)Θ(ṽδ)λ
α−β
4 E(a, t) · δα−2χ. (6.87)

We now turn to the term A2
t defined by (6.79). This quantity is given by an integral

involving the continuous kernel p1, and we will thus argue similarly to Lemma 4.3. Also
recall that our main goal here is to extract a factor δr with a strictly positive r. With this
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objective in mind, recall that (as in the proof of Lemma 4.3) the quantity Pu(w) designates
an arbitrary polynomial in w and that T is our time horizon. Similarly to (4.10) we thus get

A2
t (x) ≲ κ(Ûδ

1)Θ(ṽδ)λ
α−β
4 E(a, t)

×
∫
R
eθ(1+T )

√
T |w|−Cw2

Pu(w)dw

∫ t∧δ2

0

e−(λ+θρ)sφρ(s)ds , (6.88)

where ρ ≜ a+
√
T |w| and the function φρ is given by

φρ(s) := ρχsα/2−1 + ρ2χsα−1 + ρ2χ+β/2sα+β/2−1

+ ρ2χ+β/2sα/2+β−1 + ρ2χ(t− s)−β/2sα/2+β−1 =:
5∑
i=1

φiρ(s). (6.89)

Plugging (6.89) into (6.88), let us call A2i
t the term corresponding to the time integral∫ t∧δ2

0
e−(λ+θρ)sφiρ(s)ds. All those quantities are treated very similarly and we only show how

to handle A21
t below. Namely using the expression for φ1

ρ in (6.89), one can write A21
t as

A21
t ≜ ρχ

∫ t∧δ2

0

e−(λ+θρ)ssα/2−1ds.

We now apply Hölder’s inequality with two conjugate exponents p, q in order to get

A21
t ⩽ ρχ

(∫ t∧δ2

0

e−p(λ+θρ)sds

)1/p

·

(∫ t∧δ2

0

s(α/2−1)qds

)1/q

⩽ ρχ
(∫ ∞

0

e−p(λ+θρ)sds

)1/p

·

(∫ δ2

0

s(α/2−1)qds

)1/q

.

We can easily integrate the two terms in the right hand side above. We then choose p ≜
χ−1, q ≜ (1− χ)−1 in order to get

A21
t ≲

ρχ

(λ+ θρ)χ
δα−2+2/q ≲ δα−2χ. (6.90)

In a similar way, the other summands are estimated as

A22
t ∨ A23

t ≲ δ2(α−2χ), and A24
t ∨ A25

t ≲ δα+β−4χ. (6.91)

Therefore gathering (6.91) and (6.90) into (6.88) we arrive at

A2
t (x) ≲ κ(Ûδ

1)Θ(ṽδ)λ
α−β
4 E(a, t) · δα−2χ. (6.92)

We can conclude our small time estimate by plugging (6.92) and (6.87) into (6.77). This
yields the following uper bound, valid for t ⩽ δ2:

K11
t (x) ≲ κ(Ûδ

1)Θ(ṽδ)λ
α−β
4 E(a, t) · δα−2χ. (6.93)

Step 4: Large time estimates. This step is dedicated to handle the integral over s ⩾ δ2

defining K12
t (x) in (6.76). More specifically, resorting to our usual change of variable y =
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x+
√
sw, one can recast K12

t (x) as

K12
t (x) =

∫ t

t∧δ2

∫
R

(
∇2,δ
x p̂δ⌊s⌋(⌊

√
sw⌋)− s−3/2∂2xxp1(w)

)
I1,δ
t−s(x, x+

√
sw) ·

√
s dwds.

We now insert the quantity ∇2
xpn(x) defined by (6.60) in the right hand side above (with

k, n defined in (6.58)) to get a decomposition of the form∣∣∣K12
t (x)

∣∣∣ ⩽ B1
t (x) + B2

t (x), (6.94)

with B1
t (x) and B2

t (x) respectively defined by

B1
t (x) ≜

∫ t

t∧δ2

∫
R

∣∣∇2,δ
x p̂δ⌊s⌋(⌊

√
sw⌋)− 1

δ3
∇2
kpn(k)

∣∣ · ∣∣I1,δ
t−s(x, x+

√
sw)
∣∣ · √s dwds, (6.95)

B2
t (x) ≜

∫ t

t∧δ2

∫
R

∣∣ 1
δ3
∇2
kpn(k)− s−3/2∂2xxp1(w)

∣∣ · ∣∣I1,δ
t−s(x, x+

√
sw)
∣∣ · √s dwds. (6.96)

Let us proceed to bound the term B1
t (x) in (6.95). To this aim, we start by recalling the

definition (2.72) of p̂δt and (2.75) for ∇2,δ
x . This gives

∇2,δ
x p̂δ⌊s⌋(x) =

1

δ3
∇2
xp

d
⌊s⌋/δ2

(x
δ

)
, (6.97)

where ∇2
x in the right hand side above stands for the discrete derivative. In addition,

Theorem 2.25 states that for s ⩾ δ2∣∣∣∇2,δ
x pd⌊s⌋/δ2

(x
δ

)
−∇2

xp⌊s⌋/δ2
(x
δ

) ∣∣∣ ⩽ C1

(⌊s⌋/δ2)5/2
≲

δ5

⌊s⌋5/2
.

Plugging this information into (6.97) we get∣∣∣∇2,δ
x p̂δ⌊s⌋(x)−

1

δ3
∇2
xp⌊s⌋/δ2

(x
δ

) ∣∣∣ ≲ δ2

⌊s⌋5/2
.

In particular, for x = ⌊
√
sw⌋ and k, n defined in (6.58) we end up with∣∣∣∇2,δ

x p̂δ⌊s⌋(⌊
√
sw⌋)− 1

δ3
∇2
kpn(k)

∣∣∣ ≲ δ2

⌊s⌋5/2
. (6.98)

Next we improve our upper bound (6.98) by introducing an extra interpolating parameter
b ∈ [0, 1]. Whenever s ⩾ δ2 , combining (6.98) and the uniform bounds in Lemma 6.18, we
get the following inequality for all w ∈ R:∣∣∣∇2,δ

x p̂δ⌊s⌋(⌊
√
sw⌋)− 1

δ3
∇2
kpn(k)

∣∣∣
⩽
∣∣∣∇2,δ

x p̂δ⌊s⌋(⌊
√
sw⌋)− 1

δ3
∇2
kpn(k)

∣∣∣1−b · (∣∣∣∇2,δ
x p̂δ⌊s⌋(⌊

√
sw⌋)

∣∣∣b + ∣∣∣ 1
δ3
∇2
kpn(k)

∣∣∣b)
≲

(
δ2

⌊s⌋5/2

)1−b

·
(

1

s3/2
e−C1w2

)b
≲
δ2(1−b)

s5/2−b
e−C2w2

.

Reporting this inequality in (6.95), it follows that

B1
t (x) ≲

∫ t

0

∫
R

δ2(1−b)

s2−b
e−Cw

2 ·
∣∣I1,δ
t−s(x, x+

√
sw)
∣∣dwds. (6.99)



90 X. GENG, M. GRADINARU, AND S. TINDEL

It remains to handle the term I1,δ
t−s(x, x+

√
sw) in the right hand side of (6.99). Now recall

that I1,δ
t−s is the stochastic integral defined by (6.16). As in the proof of Lemma 4.3 (see also

the estimates after (6.43)), we shall upper bound bound this quantity by five terms:∣∣I1,δ
t−s(x, x+

√
sw)
∣∣ ≲ κ(Ûδ

1)Θ(ṽδ)λ
α−β
4 E(a, t) · Pu(w)(B11

s + · · ·+ B15
s ), (6.100)

where Pu(w) is some polynomial in |w|. For simplicity, we only discuss the first term

B11
s = e−(λ+θρ)ssα/2ρχ, where ρ ≜ a+

√
T |w|.

Reporting this definition in (6.100) and then (6.99), we get that the corresponding term in
B1
t (x) is

B11

t ≡
∫ t

0

∫
R

δ2(1−b)

s2−b
Pu(w)e

−Cw2B11
s dwds.

To extract a factor of δr from this term, we use the fact that s ⩾ δ2 to write

B11

t =

∫
R
Pu(w)e

−Cw2

ρχdw

∫ t

0

δ2(1−b)−2γ1+2γ1

s1−b−γ1
e−(λ+θρ)s · sα/2−1−γ1ds

⩽ δ2γ1 ·
∫
R
Pu(w)e

−Cw2

ρχdw

∫ t

0

e−(λ+θρ)s · sα/2−1−γ1ds,

where γ1 > 0 is some constant to be specified. According to Hölder’s inequality with p ≜ 1/χ
(1/q = 1− χ), we obtain that∫ t

0

e−(λ+θρ)s · sα/2−1−γ1ds ⩽

(∫ t

0

e−p(λ+θρ)sds

)1/p

·
(∫ t

0

sq(α/2−1−γ1)ds

)1/q

≲ (λ+ θρ)−χ · Tα/2−χ−γ1 .
Note that γ1 needs to be less than α/2 − χ so that the second time integral in the above
inequality is finite. As a consequence, the B11

t -term produces an upper estimate of the form

B11

t ⩽ Cα,β,T,γ1κ(Û
δ
1)Θ(ṽδ)λ

α−β
4 E(a, t) · δ2γ1 .

The other terms B12, . . . ,B15 are discussed in a similar way and the resulting factors of δr′

are all of higher order (i.e. r′ > 2γ1). Therefore, we arrive at

B1
t (x) ⩽ Cα,β,T,rκ(Û

δ
1)Θ(ṽδ)λ

α−β
4 E(a, t) · δr

where r is any given constant that is less than α− 2χ.
In order to complete the large time estimates, according to our decomposition (6.94), it

remains to upper bound the term B2
t (x) given by (6.96). This will be an easy consequence

of Lemma 6.20. Namely a direct application of this lemma yields

B2
t (x) ⩽

∫ t

0

∫
R

δ√
s
· 1
s
e−Cw

2∣∣I1,δ
t−s(x, x+

√
sw)
∣∣dwds.

Hence by the same kind of analysis as in the B1-case, we arrive at

B2
t (x) ⩽ Cα,β,T,rκ(Û

δ
1)Θ(ṽδ)λ

α−β
4 E(a, t) · δr

where r is any constant that is less than α − 2χ. This is exactly the same estimate as the
one for B1.
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By putting (6.73) and the estimates of A1,A2,B1,B2 together, we have thus completed
the proof of Lemma 6.17. □

6.4.2. The time variation estimate. In order to state the main result of this section, let us
introduce some more notation.

Notation 6.21. Let θ > 2, a ⩾ 1 and β be coefficients satisfying the assumptions of Defini-
tion 3.8 and Definition 3.9. We consider some additional parameters θ′ < θ and β′ > β still
satisfying the same assumptions. The norm Θ in Definition 3.9 with parameters θ′, β′ will
be denoted Θθ′,β′ while the usual norm is written as Θ. In the sequel for a function h defined
on [0, T ], the time increments of h will be denoted by

ht1,t2 = ht2 − ht1 , for 0 ⩽ t1 < t2 ⩽ T.

As a slight elaboration of Proposition 6.14, we state a lemma about the controlled norms
of W and W1,δ. Its proof is similar to that of Proposition 6.14 and omitted for the sake of
conciseness.

Lemma 6.22. For δ > 0, let W ,W1,δ be the processes defined by (6.14)-(6.15). Let (θ′, β′)
be given fixed parameters satisfying the constraints specified in Notation 6.21. Let κ̄(ω) be
defined by (6.19). Then there exist positive constants C1, C2 depending only on the underlying
exponents, such that

Λθ
′,β′ ≡ sup

δ⩾0
Θθ′,β′

(W1,δ) ∨Θθ′,β′
(W) ⩽ C1κ̄(ω)e

C1λ
(
∥f0∥C3

L
+ ∥g∥C3

L

)
(6.101)

provided that λ = λω is chosen to satisfy

C2λ
−α−β′

4 κ̄(ω) =
1

4
.

We now turn to the announced estimate for the time variations of W1,δ −W .

Lemma 6.23. Let the notation of Lemma 6.22, as well as Notation 6.21, prevail. In par-
ticular the processes W ,W1,δ are introduced in (6.14)-(6.15) and the exponents α, β satisfy
relation (3.20). Then for any a ⩾ 1, x ∈ [−a, a] and 0 ⩽ t1 < t2 ⩽ T , we have∣∣W1,δ

t1,t2(x)−Wt1,t2(x)
∣∣ ⩽ CE(a, t2)a

β/2|t2 − t1|β/2
(
λ−

α−β
4

(
κ(Ûδ

1)dÛδ
1,W

(ṽδ, v)

+Θ(v)ρ(Ûδ
1,W)

)
+ λ

α−β
4 κ(Ûδ

1)Θ(ṽδ)δα−β + Λθ
′,β′
δβ

′−β
)
, (6.102)

where we recall that W1,δ
t1,t2(x) ≜ Wδ

t2
(x)−Wδ

t1
(x) and similarly for Wt1,t2(x). We also recall

that in (6.102) the quantity E is given by (3.26), ρ is defined by (5.9) and dÛδ
1,W

is introduced
in (6.11).

Proof of Lemma 6.23. We divide this proof again into several steps. Some technical consid-
erations are similar to previous results and will only be sketched.
Step 1: Decomposition of the time increments. We begin by decomposing the time increment
into

W1,δ
t1,t2(x)−Wt1,t2(x) = T 1

t1,t2
(x) + T 2

t1,t2
(x), (6.103)
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where the increments T 1, T 2 are defined by

T 1
t1,t2

(x) ≜
∫ t1

0

∫
R

(
Qδ
s(t2, x, y)−Qδ

s(t1, x, y)
)
dyds, T 2

t1,t2
(x) ≜

∫ t2

t1

∫
R
Qδ
s(t2, x, y)dyds,

(6.104)
and where we have used the notation

Qδ
s(t, x, y) ≜ ∇2,δ

x p̂δ⌊t−s⌋(⌊x− y⌋) · Iδs (x, y)− ∂2xxpt−s(x− y) · Is(x, y),

with Iδs , Is given by (6.16). Also recall that in the sequel we keep on using our Notation 6.3
for the δ-integer parts ⌊x⌋ and ⌊t⌋. The remainder of the proof is dedicated to upper bound
terms T 1, T 2 in (6.104).
Step 2: Bounding T 2. In order to bound T 2 in (6.104), we further decompose this term as

T 2
t1,t2

(x) = T 21
t1,t2

(x) + T 22
t1,t2

(x), (6.105)

where T 21, T 22 are respectively defined by

T 21
t1,t2

(x) ≜
∫ t2

t1

∫
R

(
∇2,δ
x p̂δ⌊t2−s⌋(⌊x− y⌋)− ∂2xxpt2−s(x− y)

)
· Iδs (x, y)dyds, (6.106)

T 22
t1,t2

≜
∫ t2

t1

∫
R
∂2xxpt2−s(x− y) ·

(
Iδs (x, y)− Is(x, y)

)
dyds. (6.107)

The estimate of T 22
t1,t2

(x) above follows the same lines as in the proof of Lemma 4.8 (see
(4.50)). For sake of conciseness, we just state the result here:

|T 22
t1,t2

(x)| ⩽ Cλ−
α−β
4 E(a, t2)a

β/2|t2− t1|β/2 ·
(
κ(Ûδ

1)dÛδ
1,W

(ṽδ, v) + Θ(v)ρ(Ûδ
1,W)

)
. (6.108)

To estimate T 21
t1,t2

(x), we set τ ≜ t2 − t1 and resort to the decomposition

T 21
t1,t2

(x) = T̂ −
τ (x) + T̂ +

τ (x), (6.109)

where

T̂ −
t1,t2

(x) =

∫ τ∧δ2

0

∫
R

(
∇2,δp̂δ⌊r⌋(⌊y⌋)− ∂2xxpr(y)

)
· Iδt2−s(x, x+ y)dyds (6.110)

T̂ +
t1,t2

(x) =

∫ τ

τ∧δ2

∫
R

(
∇2,δp̂δ⌊r⌋(⌊y⌋)− ∂2xxpr(y)

)
· Iδt2−s(x, x+ y)dyds. (6.111)

Now the arguments in order to estimate (6.110) and (6.111) are essentially similar to what
we did in Lemma 6.17 for the terms K11 and K12 (see (6.75)-(6.76)). In order to abbreviate
our computations, we will only detail the bound for the small time integral T̂ −. As in
Lemma 6.17, the large time integral T̂ +

t1,t2(x) is treated by using the local CLT and the
Taylor approximation of the Gaussian kernel.

In order to handle the small time increment T̂ −
τ (x), we proceed exactly as in (6.77). That

is, recalling that τ = t2 − t1, we write

T̂ −
τ (x) ⩽ A1

τ (x) +A2
τ (x), (6.112)
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where A1 and A2 are respectively given by

A1
τ (x) =

∫ τ∧δ2

0

∫
R

∣∣∇2,δp̂δ⌊r⌋(⌊y⌋)
∣∣ · ∣∣Iδt2−s(x, x+ y)

∣∣ dyds (6.113)

A2
τ (x) =

∫ τ∧δ2

0

∫
R

∣∣∂2xxpr(y)∣∣ · ∣∣Iδt2−s(x, x+ y)
∣∣ dyds. (6.114)

Here again, for the sake of conciseness we shall only upper bound the term A1
τ (x) above.

Namely recall that ∇2,δp̂δ⌊0⌋ is supported in {y ∈ R; |y| ⩽ δ}. Moreover we have estab-
lished (6.80) above (which is a consequence of (2.81)), that is∣∣∇2,δ

x p̂δ0(⌊y⌋)
∣∣ ≲ 1

δ3
, for |y| ⩽ δ. (6.115)

In addition, we know from (6.81) that the rough integral Iδt2−s(x, x + y) is bounded above
by five basic terms. The first term appearing on the right hand side of (6.81) together
with (6.115) yield the following integral in A1

τ (x):

A11
τ (x) ≜

1

δ3

∫ τ∧δ2

0

∫
{y:|y|⩽δ}

(a+ |y|)χ|y|αe−(λ+θ(a+|y|))sdyds.

Owing to condition (3.20), we have χ < β/2. Therefore, for all a ⩾ 1 we get

|A11
τ (x)| ≲ aβ/2

δ3

∫ τ∧δ2

0

∫
{y:|y|⩽δ}

|y|αdyds

≲
aβ/2

δ3
· δα+1 · (τ ∧ δ2)β/2+1−β/2 ⩽

aβ/2

δ3
· δα+1 · τβ/2 · δ2−β = aβ/2τβ/2δα−β.

In the inequality above, notice that we have extracted a power τβ/2 = (t2 − t1)
β/2, which

is our expected time regularity for v. This explains the appearance of the factor δα−β in
Lemma 6.23. The other four terms on the right hand side of (6.81) lead to four corresponding
integrals in A1

τ (x), all of which having order δr with some r > α− β. As a result, we obtain
that

|A1
τ (x)| ≲ κ(Ûδ

1)Θ(ṽδ)λ
α−β
4 E(a, t2)a

β/2|t2 − t1|β/2 · δα−β. (6.116)
A similar argument leads to exactly the same upper bound for A2

τ (x). Hence reporting (6.116)
into (6.112), then back into (6.109) and (6.105), we have proved that T 2

t1,t2
(x) satisfies an

inequality of the form (6.102). This completes the estimate for T2.
Step 3: Bounding T 1. We now consider the term T 1 defined in (6.103). The analysis is in
fact similar to what we performed in (4.44), and we only point out the main ingredients. In
the first place we write

T 1
t1,t2

(x) = T 11
t1,t2

(x) + T 12
t1,t2

(x), (6.117)
where we define

T 11
t1,t2

(x) ≜
∫ t1

0

∫
R

(
Jδt1,t2(s, x− y)− Jt1,t2(s, x− y)

)
Iδs (x, y)dyds, (6.118)

T 12
t1,t2

(x) ≜
∫ t1

0

∫
R
Jt1,t2(s, x− y)

(
Iδs (x, y)− Is(x, y)

)
dyds , (6.119)
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and where to ease notation we have set:

Jδt1,t2(s, u) ≜ ∇2,δ
x p̂δ⌊t2−s⌋(⌊u⌋)−∇2,δ

x p̂δ⌊t1−s⌋(⌊u⌋), (6.120)

Jt1,t2(s, u) ≜ ∂2xxpt2−s(u)− ∂2xxpt1−s(u). (6.121)

We now handle the terms T 11, T 12 above. The estimate of T 12
t1,t2

(x) follows the same lines
as in the proof of Lemma 4.8. We end up with

|T 12
t1,t2

(x)| ⩽ Cλ−
α−β
4 E(a, t2)a

β/2|t2− t1|β/2 ·
(
κ(Ûδ

1)dÛδ
1,W

(ṽδ, v) + Θ(v)ρ(Ûδ
1,W)

)
. (6.122)

For the integral T 11
t1,t2

(x), we invoke the discrete heat equation (2.78) to write, for s1 < s2 in
δ2N and u ∈ δZ,

p̂δs2(u)− p̂δs1(u) =

s2−δ2∑
tj=s1

(
p̂δtj+1

(u)− p̂δtj(u)
)
=
σ2

2
δ2 ·

s2−δ2∑
tj=s1

∇2,δ
x p̂δtj(u). (6.123)

In addition, the sum in the right hand side above can be written as a continuous time integral.
We get

p̂δs2(u)− p̂δs1(u) =
σ2

2

∫ s2

s1

∇2,δ
x p̂δ⌊r⌋(u)dr. (6.124)

Now recall that the fourth discrete derivative ∇4,δ
x is defined by (2.77). Moreover, it is readily

checked that ∇2,δ
x (∇2,δ

x f) = ∇4,δ
x f for f defined on the grid δZ. Therefore applying ∇2,δ

x on
both sides of (6.124) it follows that

Jδt1,t2(s, u) =
σ2

2
δ2 ·

⌊t2−s⌋−δ2∑
tj=⌊t1−s⌋

∇4,δp̂δtj(⌊u⌋).

Applying the same kind of manipulations to the continuous difference Jt1,t2(s, u) in (6.121)
and then reporting those expressions in (6.118) we end up with

T 11
t1,t2

(x) =
σ2

2

∫ t1

0

∫
R

(∫ ⌊t2−s⌋

⌊t1−s⌋
∇4,δ
x p̂δ⌊r⌋(⌊x− y⌋)dr −

∫ t2−s

t1−s
∂4xpr(x− y)dr

)
Iδs (x, y)dyds.

(6.125)

Similarly to what we did for Lemma 6.17 we need to deal with the cases |t2 − t1| ⩽ δ2 and
|t2 − t1| > δ2 separately in (6.125). Indeed, analyzing T 11

t1,t2
(x) in the former case will not

produce a useful time-variation estimate and we will adopt a more generic argument instead.
We first discuss the case when |t2 − t1| > δ2.

Case I: |t2 − t1| > δ2. For |t2 − t1| > δ2 the following holds true for all s ∈ [0, t1]:

⌊t1 − s⌋ < t1 − s < ⌊t2 − s⌋ < t2 − s.

According to this elementary fact we decompose T 11 into

T 11
t1,t2

(x) = T 111
t1,t2

(x)− T 112
t1,t2

(x) + T 113
t1,t2

(x) (6.126)
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where T 111, T 112, T 113 are respectively defined by

T 111
t1,t2

(x) =
σ2

2

∫ t1

0

∫
R

∫ t1−s

⌊t1−s⌋
∇4,δ
x p̂δ⌊r⌋(⌊x− y⌋) Iδs (x, y) drdyds, (6.127)

T 112
t1,t2

(x) =
σ2

2

∫ t1

0

∫
R

∫ t2−s

⌊t2−s⌋
∇4,δ
x p̂δ⌊r⌋(⌊x− y⌋) Iδs (x, y)drdyds, (6.128)

T 113
t1,t2

(x) =
σ2

2

∫ t1

0

∫
R

∫ t2−s

t1−s

(
∇4,δ
x p̂δ⌊r⌋(⌊x− y⌋)− ∂4xpr(x− y)

)
Iδs (x, y) drdyds. (6.129)

The analysis of these terms is an adaptation of the calculations developed in the proof of
Lemma 4.8. For the sake of simplicity, we only give a brief discussion on T 112

t1,t2
(x) and point

out the main extra ingredients. The final estimate for T 11
t1,t2

(x) is stated in (6.134) below.

Let us handle the term T 112
t1,t2

in (6.128). We first resort to our usual change of variable
y = x+

√
rw, which yields

T 112
t1,t2

(x) =
σ2

2

∫ t1

0

∫
R

∫ t2−s

⌊t2−s⌋
∇4,δ
x p̂δ⌊r⌋(⌊

√
rw⌋) ·

√
r · Iδs (x, x+

√
rw)drdwds.

Moreover, since t2 − t1 > δ2 and 0 ⩽ s ⩽ t1, we have

t2 − s ⩾ t2 − t1 > δ2 =⇒ ⌊t2 − s⌋ ⩾ δ2.

According to the uniform Gaussian estimate (2.80), we get the following upper bound for all
r ∈ [⌊t2 − s⌋, t2 − s] and w ∈ R:∣∣∇4,δ

x p̂δ⌊r⌋(⌊
√
rw⌋)

∣∣ ⩽ C1

r5/2
e−C2w2

.

Plugging this estimate into (6.128) and setting u = ⌊t2 − s⌋+ r, it follows that

T 112
t1,t2

(x) ≲
∫
R
e−Cw

2

dw

∫ t1

0

ds

∫ t2−s

⌊t2−s⌋
u−2
∣∣Iδs (x, x+√

uw)
∣∣du

=

∫
R
e−Cw

2

dw

∫ t1

0

ds

∫ (t2−s)−⌊t2−s⌋

0

(⌊t2 − s⌋+ r)−2
∣∣Iδs (x, x+√⌊t2 − s⌋+ rw)

∣∣dr.
We now invoke the relation (t2 − s)− ⌊t2 − s⌋ ≤ δ2 again and apply Fubini’ s theorem plus
the change of variable v = t2 − s. This yields

T 112
t1,t2

(x) ≲
∫ δ2

0

dr

∫
R
e−Cw

2

dw

∫ t1

0

ds

(t2 − s+ 2r)2
∣∣Iδs (x, x+√⌊t2 − s⌋+ rw)

∣∣
≲
∫ δ2

0

dr

∫
R
e−Cw

2

dw

∫ t2

t2−t1

dv

v2
∣∣Iδt2−v(x, x+√⌊v⌋+ rw)

∣∣. (6.130)

As we have seen several times (cf. (6.80)), the estimate of the rough integral Iδt2−v(x, x +√
⌊v⌋+ rw) involves five basic terms. With the observation that

⌊v⌋+ r ⩽ v + δ2 ⩽ v + t2 − t1 ⩽ 2v,
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the first term among the five leads us to the consideration of the integral

ρχ
∫ t2

t2−t1
e−(λ+θρ)vvα/2−2dv ⩽ ρβ/2

∫ ∞

t2−t1
vα/2−2dv ≲ ρβ/2|t2 − t1|α/2−1

where ρ ≜ a +
√
T |w|. By including the outer two integrals in (6.130), this term is further

estimated as

aβ/2|t2 − t1|α/2−1δ2 = aβ/2δ2|t2 − t1|
α−β
2

−1 · |t2 − t1|β/2 ⩽ aβ/2δα−β · |t2 − t1|β/2, (6.131)

where we have used the relation t2 − t1 ≥ δ2 for the last inequality. Notice that (6.131) is
compatible with our claim (6.102). Next in the five terms decomposition alluded to above,
one can check (as in the proof of Lemma 6.17 ) that the other four terms yield higher powers
of the form δr with r > α− β. Gathering those estimates we have obtained∣∣T 112

t1,t2
(x)
∣∣ ≲ E(a, t2)a

β/2|t2 − t1|β/2λ
α−β
4 κ(Ûδ

1)Θ(ṽδ)δα−β. (6.132)

The term T 111
t1,t2

(x) is treated along the same lines, with a small difference. Namely one should
separate the cases t1 ⩽ δ2 and t1 > δ2. For the case t1 > δ2, one can follow exactly the
same arguments as for (6.132). Whenever t1 ⩽ δ2 one should rely on the fact that ∇4,δ

x p̂δ0
is compactly supported, similarly to (6.79) and (6.83). We leave the details to the patient
reader.

In order to handle the term T 113
t1,t2

(x) in (6.129), we gather Theorem 2.25 with uniform
Gaussian estimates. This enables to write, for all r ≥ δ2 and w ∈ R,

∣∣∇4,δ
x p̂δ⌊r⌋(⌊

√
rw⌋)− r−5/2∂4xp1(w)

∣∣ ≲ δ√
r
· e

−Cw2

r5/2
, ∀r ⩾ δ2, w ∈ R.

Then arguing similarly to T 111
t1,t2

(x) and T 112
t1,t2

(x) we get∣∣T 113
t1,t2

(x)
∣∣ ≲ E(a, t2)a

β/2|t2 − t1|β/2λ
α−β
4 κ(Ûδ

1)Θ(ṽδ)δα−β. (6.133)

Eventually, putting together (6.132) and (6.133) and recalling the decomposition (6.126), we
arrive at the following bound for the case t2 − t1 ≥ δ2:

|T 11
t1,t2

(x)| ≲ E(a, t2)a
β/2|t2 − t1|β/2λ

α−β
4 κ(Ûδ

1)Θ(ṽδ)δα−β. (6.134)

Case II : |t2− t1| ⩽ δ2. The argument for this case is generic. Recall that θ′ < θ and β′ > β
are parameters (β′ satisfies the same constraints as β does) such that

e(θ
′−θ)a+(θ′−θ)aTa

β′−β
2 ⩽ 1 , for all a ⩾ 1. (6.135)

The notation Θθ′,β′ for the controlled path norm indicates that the exponents (θ, β) are
replaced by (θ′, β′) whenever applicable. We also denote Eθ′(a, t2) as the exponential weight
function E(·, ·) defined in Definition 3.8 with θ being replaced by θ′. By treating wδ, w as
controlled paths with respect to the Θθ′,β′-norm, we directly apply the triangle inequality to



RANDOM WALKS IN RANDOM ENVIRONMENT 97

get∣∣W1,δ
t1,t2(x)−Wt1,t2(x)

∣∣ ⩽ ∣∣W1,δ
t1,t2(x)

∣∣+ |Wt1,t2(x)|

⩽ Eθ′(a, t2)a
β′/2
(
Θθ′,β′

(wδ) + Θθ′,β′
(w)
)
|t2 − t1|β

′/2

⩽ Eθ(a, t2)a
β/2
(
Θθ′,β′

(wδ) + Θθ′,β′
(w)
)
δβ

′−β|t2 − t1|β/2, (6.136)

where the last inequality follows from the assumption that |t2− t1| ⩽ δ2. This yields the last
term appearing on the right hand side of (6.102).
Step 4: Conclusion. The proof of Lemma 6.23 is now complete by reporting (6.122), (6.134)
and (6.136) into the decompositions (6.117) and (6.103). □

6.4.3. The space variation estimate. The analysis for this part follows the same steps as in
Section 4.3.3, with the discussion of multiple cases (small time versus large time, that is
t ⩽ |x′ − x|2 versus t > |x′ − x|2). The separation small versus large time is also largely
similar to the time variation case in Section 6.4.2. We only state the final result below and
leave the details to the patient reader. Notice that below we use the notation (4.51) for
spatial increments.

Lemma 6.24. As in Lemma 6.23 we consider some parameters θ′, β′, θ, θ′ according to No-
tation 6.21 as well as the processes W, W1,δ in (6.14)-(6.15). Following our notation (4.51),
set

Wt(x, x
′) ≜ Wt(x

′)−Wt(x), and W1,δ
t (x, x′) ≜ W1,δ

t (x′)−W1,δ
t (x).

Also recall that α, β, χ fulfill condition (3.20) and that the quantities Λ are introduced in (6.101).
Then, for any a ⩾ 1, x, x′ ∈ [−a, a] and t ∈ [0, T ], we have∣∣W1,δ

t (x, x′)−Wt(x, x
′)
∣∣ ⩽ CE(a, t)aβ/2|x′ − x|β

(
λ−

α−β
4

(
κ(Ûδ

1)dÛδ
1,W

(ṽδ, v)

+Θ(v)ρ(Ûδ
1,W)

)
+ λ

α−β
4 κ(Ûδ

1)Θ(ṽδ)δα−β + Λθ
′,β′
δβ

′−β
)
.

(6.137)

6.4.4. The remainder estimate. In Proposition 6.14 we have bounded the rough path norm
of vδ without referring explicitly to its rough path decomposition. We will now give a more
specific formula in this direction. Namely, going back to relation (6.14) and since W = MV ,
equation (3.29) asserts that the derivative ∂WWt(x) is

∂WWt(x) = ∂Wvt(x) = − 2

σ2
vt(x). (6.138)

As in relation (4.60) we thus introduce a remainder term for W , seen as a process controlled
by W:

RWt
W (x, x′) = Wt(x, x

′) +
2

σ2
vt(x)W

1(x, x′). (6.139)

Analogously, we shall define similar quantities for W1,δ seen as a process controlled by Ûδ
1:

∂Ûδ
1
W1,δ

t (x) = − 2

σ2
ṽδt (x), (6.140)

RW1,δ
t

Ûδ
1

(x, x′) = W1,δ
t (x, x′) +

2

σ2
ṽδt (x)Û

δ
1 (x, x

′). (6.141)
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Notice that in (6.139) and (6.141) we have used the notation (4.51) for spatial increments.
Notice also that (6.141) gives a controlled path for the stochastic integral term W1,δ only.
Taking into account the fact that one expects the deterministic terms in (6.1)-(6.2) to have
a null Gubinelli derivative, relation (6.141) can also be translated into a decomposition for
the process vδ. We label this decomposition for further use:

ṽδt (x, x
′) = − 2

σ2
ṽδt (x)Û

δ
1 (x, x

′) +Rṽδt
Ûδ

1

(x, x′). (6.142)

We will go back to this decomposition in Section 6.5. For now, the main task in this section
is to compare the remainder terms RWt and RW1,δ

t above. Our result is summarized in the
lemma below.

Lemma 6.25. We use the same notation as in Lemma 6.24. Let RWt and RW1,δ
t be the

remainders respectively defined by (6.139) and (6.141). Then for every a ⩾ 1, x, x′ ∈ [−a, a]
and t ∈ [0, T ], we have∣∣RW1,δ

t

Ûδ
1

(x, x′)−RWt
W (x, x′)

∣∣
⩽ CE(a, t)aχ(aβ/2 + t−β/2)|x′ − x|2β

[(
κ(Ûδ

1)dÛδ
1,W

(ṽδ, v) + Θ(v)ρ(Ûδ
1,W)

)
+λ

α−β
4

(
κ(W)Θ(v)δα−β +

(
Λθ

′,β′
+ κ(Ûδ

1)Θ(ṽδ)
)
δ

α
β′+β

(β′−β)
)]
. (6.143)

Let us prepare for the proof of Lemma 6.25. As in Sections 6.4.2 and 6.4.3, we only provide
the details for those estimates that do not follow from a simple adaptation of the analysis
in Section 4.3. We begin by recalling that according to (6.7) we have set W = MV and
the remainder for W is spelled out in (6.139). Otherwise stated the remainder of W as a
controlled process is given by (4.62), that is

RWt
W (x, x′) = R0

t (x, x
′) +

2

σ2
vt(x)PtW (x, x′), (6.144)

where R0
t (x, x

′) is defined by (4.63) and Pt is the heat semigroup on R with generator σ2

2
∆.

To compare (6.144) with the discrete remainder, we shall make use of a similar decomposition
of RW1,δ

t

Ûδ
1

given in the lemma below.

Lemma 6.26. Let W1,δ be the process introduced in (6.55), and recall that its remainder
RW

Ûδ
1

is defined by (6.141). Then for all t ∈ [0, T ] and x, x′ ∈ Z, the following decomposition
holds true:

RW1,δ
t

Ûδ
1

(x, x′) = R0,δ
t (x, x′) +

2

σ2
ṽδt (x)

(
P̂ δ
t Û

δ
1 (x, x

′) +Qδ
t (x, x

′)−Kδ
t (x, x

′)
)
. (6.145)

In (6.145) we have set

R0,δ
t (x, x′) ≜

∫ t

0

∫
R

(
∇2,δ
x p̂δ⌊s⌋(⌊x′ − y⌋ − ∇2,δ

x p̂δ⌊s⌋(⌊x− y⌋))
)

×
∫ y

x

(
ṽδt−s(z)− ṽδt (x)

)
dÛδ

1(z)dyds, (6.146)
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and for ξ ∈ R we also define

P̂ δ
t Û

δ
1 (ξ) ≜

∫
R
p̂δ⌊t⌋(⌊ξ − y⌋)Û δ

1 (y)dy, (6.147)

Qδ
t (ξ) ≜

t− ⌊t⌋
δ2

∫
R

(
p̂δ⌊t⌋+δ2(⌊ξ − y⌋)− p̂δ⌊t⌋(⌊ξ − y⌋)

)
Û δ
1 (y)dy, (6.148)

Kδ(ξ) ≜ P̂ δ
0 Û

δ
1 (ξ)− Û δ

1 (ξ). (6.149)

Also recall our convention (4.51) for increments of the form Qδ
t (x, x

′), Kδ
t (x, x

′).

Proof. The proof is purely algebraic and reproduces some of the steps in Lemma 4.11. Start-
ing from (6.14), some elementary manipulations yield

W1,δ
t (x, x′) = R0,δ

t (x, x′) + ṽδt (x) · Iδt (x, x′), (6.150)

where R0,δ
t (x, x′) is defined by (6.146) and

Iδt (ξ) ≜
∫ t

0

∫
R
∇2,δ
x p̂δ⌊s⌋(⌊ξ − y⌋)Û δ

1 (y)dyds. (6.151)

Similarly to what we have done in (6.123), one can switch from space to time gradients of
p̂δ in (6.151) thanks to the discrete heat equation (2.78). Namely write

p̂δs+δ2(u)− p̂δs(u)

δ2
=
σ2

2
∇2,δ
x p̂δs(u), for all (s, u) ∈ δ2N× δZ.

Then we can recast (6.151) as

Iδt (ξ) =
2

σ2

∫ t

0

∫
R

p̂δ⌊s⌋+δ2(⌊ξ − y⌋)− p̂δ⌊s⌋(⌊ξ − y⌋)
δ2

Û δ
1 (y)dyds.

By further expressing the above time integral as
∫ t
0
=
∫ ⌊t⌋
0

+
∫ t
⌊t⌋, the first integral yields

2
σ2 (P̂

δ
t Û

δ
1 − P̂ δ

0 Û
δ
1 )(ξ) by expressing the time integral as a discrete sum, while the other one

yields 2
σ2Qδ

t (ξ). Summarizing, we have obtained the relation

Iδt (ξ) =
2

σ2

(
(P̂ δ

t Û
δ
1 − P̂ δ

0 Û
δ
1 )(ξ) +Qδ

t (ξ)
)
. (6.152)

Plugging (6.152) into (6.150) we thus obtain

W1,δ
t (x, x′) =

2ṽδt (x)

σ2

(
(P̂ δ

t Û
δ
1 − P̂ δ

0 Û
δ
1 )(x, x

′) +Qδ
t (x, x

′)
)
+R0,δ

t (x, x′).

Now add and subtract the term 2ṽδt (x)

σ2 Û δ
1 (x, x

′) to the above expression. This yields

W1,δ
t (x, x′) =

2ṽδt (x)

σ2
Û δ
1 (x, x

′) +
2ṽδt (x)

σ2

(
P̂ δ
t Û

δ
1 (x, x

′) +Qδ
t (x, x

′)−Kδ
t (x, x

′)
)
+R0,δ

t (x, x′),

where Kδ
t is defined by (6.149). This proves our claim (6.145). □

Remark 6.27. The appearance of the Kδ-term is a special feature in the interpolated discrete
equation which does not arise in the continuous case. Indeed, it is due to the fact that
x 7→ p̂δ0(⌊x⌋) is not the Dirac delta function on R.

We now turn our attention to the proof of our main estimate for the remainder.
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Proof of Lemma 6.25. We have seen that RWt
W and RW1,δ

t

Ûδ
1

are respectively given by (6.139)
and (6.141), with decompositions (6.144) and (6.145). Therefore our global strategy will be
based on the following estimates:

(i) compare R0,δ
t (x, x′) versus R0

t (x, x
′);

(ii) compare ṽδt (x)(P̂ δ
t Û

δ
1 (x

′)− P̂ δ
t Û

δ
1 (x)) versus vt(x)(PtW (x′)− PtW (x));

(iii) show that both Qδ
t (x, x

′), Kδ(x, x′) are small terms.

Below we divide this task into several steps.
Step 1: Case t < δ2. Like in the proof of Lemma 6.23 (see (6.136)), we will prove that all the
terms in (i)-(iii) above are small individually. We summarize the basic analysis as follows.
(A) [Estimating R0] By adapting the proof of Lemma 4.12, it is seen easily that

|R0
t (x, x

′)| ≲ κ(W)Θ(v)E(a, t)aχ+β/2|x′ − x|2β · δα−β. (6.153)

(B) [Estimating PtW ] As a consequence of Lemma 4.13 (cf. (4.91) and (4.92)), as well as
the estimate on V in Theorem 3.11, we have∣∣vt(x) · (PtW (x′)− PtW (x))

∣∣ ≲ κ(W)Θ(v)E(a, t)aχt−β/2|x′ − x|2β · t
α−β
2

⩽ κ(W)Θ(v)E(a, t)aχt−β/2|x′ − x|2β · δα−β. (6.154)

(C) [Estimating R0,δ] We start from the expression (6.146) and we set u = x−y. This yields

R0,δ
t (x, x′) =

∫ t

0

∫
R

(
∇2,δ
x p̂δ0(⌊x′ − x+ u⌋)−∇2,δ

x p̂δ0(⌊u⌋)
)

×
∫ x−u

x

(
ṽδt−s(z)− ṽδt (x)

)
dÛ δ

1 (z)duds. (6.155)

The above expression can be estimated in the usual way as in the continuous case (see
relation (4.85)) by writing out ∇2,δ

x p̂δ0 explicitly and splitting

ṽδt−s(z)− ṽδt (x) = ṽδt−s(z)− ṽδt−s(x) + ṽδt−s(x)− ṽδt (x).

For simplicity, we only consider the integral corresponding to ṽδt−s(z)− ṽδt−s(x) (the other
one is in fact easier), and call this integral N δ

t (x, x
′). Specifically, we consider

N δ
t (x, x

′) =

∫ t

0

∫
R

(
∇2,δ
x p̂δ0(⌊x′ − x+ u⌋)−∇2,δ

x p̂δ0(⌊u⌋)
)

×
∫ x−u

x

(
ṽδt−s(z)− ṽδt−s(x)

)
dÛ δ

1 (z)duds . (6.156)

With the exact expression of p̂0(x) = δ−11(x=0), a simple explicit calculation shows that

∇2,δ
x p̂δ0(u) = − 1

2δ3
1{u=0} −

1

16δ3
1{u=±δ} +

1

8δ3
1{u=±2δ} +

1

16δ3
1{u=±3δ}. (6.157)

As a result, the u-integral in (6.155)-(6.156) is supported on finitely many intervals of order
δ. Those regions will be paired in order to take advantage of some cancellations due to our
expression (6.157).
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As an example, set η = x′−x and consider the term corresponding to the regions ⌊η+u⌋ = 0
versus ⌊u⌋ = 0. This yields a term

N 1,δ(x, x′) ≜
∫ t

0

(∫
{u:⌊η+u⌋=0}

∇2,δ
x p̂δ0(⌊η + u⌋)−

∫
{u:⌊u⌋=0}

∇2,δ
x p̂δ0(⌊η + u⌋)

)
×
∫ x−u

x

(
ṽδt−s(z)− ṽδt−s(x)

)
dÛ δ

1duds

=− 1

2δ3

∫ t

0

(∫ −η+δ

−η
−
∫ δ

0

)∫ x−u

x

(
ṽδt−s(z)− ṽδt−s(x)

)
dÛ δ

1duds. (6.158)

We first consider the case when 0 < η < δ. Then (6.158) becomes

N 1,δ(x, x′) = − 1

2δ3

∫ t

0

(∫ 0

−η
−
∫ δ

−η+δ

)∫ x−u

x

(
ṽδt−s(z)− ṽδt−s(x)

)
dÛ δ

1duds. (6.159)

In order to estimate this term, we proceed as in Proposition 6.14 and Lemma 4.2. Namely,
we bound the integral with respect to Û δ

1 by four terms like in (4.6). For notational sake, we
will just focus on the fourth term which will be called N 14,δ

t (x, x′). It reads

N 14,δ
t (x, x′) =

1

δ3
κ(Ûδ

1)Θ(ṽδ)E(a, t)a2χλ
α−β
4

×
∫ t

0

(∫ 0

−η
−
∫ δ

−η+δ

)
e−(λ+θa)s|t− s|−β/2|u|α+2βduds . (6.160)

The above integral is handled by elementary methods. Since 0 < η < δ, the quantity N 14,δ
t

can be upper bounded as

N 14,δ
t (x, x′)

⩽
1

δ3
κ(Ûδ

1)Θ(ṽδ)E(a, t)a2χλ
α−β
4

∫ t

0

∫
[−η,0]∪[−η+δ,δ]

e−(λ+θa)s|t− s|−β/2|u|α+2βduds . (6.161)

Then an explicit computation reveals that

1

δ3

∫ t

0

(t− s)−β/2ds

∫ δ

−η+δ
|u|α+2βdu

≲
1

δ3
t1−β/2 · δα+2β · |η| = 1

δ3
t1−β/2 · δα+2β · |η|1−2β|η|2β ⩽ |η|2β · δα−β, (6.162)

where we have used the assumptions t < δ2 and |η| < δ to reach the last inequality. More-
over, the same kind of inequality holds true for the integral on [−η, 0]. Hence plugging
relation (6.162) into (6.161) we get∣∣N 14,δ

t (x, x′)
∣∣ ≲ κ(Ûδ

1)Θ(ṽδ)E(a, t)λ
α−β
4 e−(λ+θa)sa2χ|η|2βδα−β

≲ κ(Ûδ
1)Θ(ṽδ)E(a, t)λ

α−β
4 aχ+β/2|x′ − x|2β · δα−β, (6.163)

where we have used the relation χ < β/2, a ⩾ 1 and where we recall that η = x′ − x for the
last inequality. We now gather (6.161) with similar estimates coming from the integral with
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respect to Û δ
1 , and we plug those into (6.159). We end up with∣∣N 1,δ

t (x, x′)
∣∣ ≲ κ(Ûδ

1)Θ(ṽδ)E(a, t)λ
α−β
4 aχ+β/2|x′ − x|2β · δα−β, (6.164)

whenever |x′ − x| < δ.
In order to bound the term N 1,δ in (6.159) when |η| = |x− x′| ⩾ δ, we can directly apply

the triangle inequality to the u-integral in (6.158) and the resulting estimate is the same as
in (6.164). Regions corresponding to other cases in (6.157) lead to the same estimate as well.
To conclude, we arrive at the following estimate:

|R0,δ
t (x, x′)| ≲ κ(Ûδ

1)Θ(ṽδ)λ
α−β
4 E(a, t)aχ+β/2|x′ − x|2β · δα−β. (6.165)

(D) We estimate the quantity

R1,δ
t (x, x′) ≜ P̂ δ

t Û
δ
1 (x, x

′) +Qδ
t (x, x

′)−Kδ(x, x′) , (6.166)

appearing in (6.145), in one go. First observe that we are dealing with the case t ⩽ δ2, for
which ⌊t⌋ = 0. Hence the expressions in (6.147)-(6.148)-(6.149) can be reduced to

R1,δ
t (x, x′) =

t

δ2

∫
R

(
p̂δδ2(⌊ξ − y⌋)− p̂δ0(⌊ξ − y⌋)

)
Û δ
1 (y)dy

∣∣x′
x
+ Û δ

1 (x, x
′)

=
t

δ2

∫
R

(
p̂δδ2(⌊z⌋)− p̂δ0(⌊z⌋)

)
Û δ
1 (x− z, x′ − z) dz + Û δ

1 (x, x
′). (6.167)

To proceed further, we shall divide our discussion into two cases: |x′−x|2 ⩾ t or |x′−x|2 < t.
The second case will be treated by a generic argument later on (see Step 2 below). Here we
only consider the first case. Note that integrating against p̂δ0 or p̂δδ2 is essentially averaging
over regions of order δ. By applying the triangle inequality to (6.167) in the obvious way and
simply using the α-Hölder estimate for Û δ

1 , we see that

|R1,δ
t (x, x′)| ≲ κ(Ûδ

1)a
χ|x′ − x|α = κ(Ûδ

1)a
χt−β/2 · tβ/2|x′ − x|α−2β · |x′ − x|2β.

In addition, recall from (3.20) that β > 1/3 and α < 1/2. In particular we have α < 2β.
Hence owing to the fact that |x− x′|2 ⩾ t we get

|R1,δ
t (x, x′)| ⩽ κ(Ûδ

1)a
χt−β/2 · tβ/2 · tα/2−β · |x′ − x|2β

= κ(Ûδ
1)a

χt−β/2 · tα/2−β/2 · |x′ − x|2β ⩽ κ(Ûδ
1)a

χt−β/2|x′ − x|2β · δα−β,

where we have invoked our standing assumption t < δ2 for the last inequality. With Propo-
sition 6.14 in mind, we thus obtain the following estimate:∣∣2ṽδt (x) · R1,δ

t (x, x′)
∣∣ ≲ κ(Ûδ

1)Θ(ṽδ)E(a, t) · aχt−β/2|x′ − x|2β · δα−β. (6.168)

Summarizing our considerations so far, we report our bounds (6.153), (6.154), (6.165) and
(6.168) into (6.139) and (6.141), we have achieved the following inequality for the case t ⩽ δ2:∣∣RW1,δ

t

Ûδ
1

(x, x′)−RWt
W (x, x′)

∣∣
≲
(
κ(Ûδ

1)Θ(ṽδ) + κ(W)Θ(v)
)
E(a, t)λ

α−β
4 aχ(aβ + t−β/2)|x′ − x|2β · δα−β. (6.169)

Step 2: Case |x′ − x|2 < t ∧ δ2η. Here we consider a parameter η ∈ (0, 1) to be chosen later
on, and we assume |x′ − x|2 < t ∧ δ2η. In this case, we adopt a generic argument as in Case
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II of the time-variation estimate. Under the same notation leading to (6.136) in that part,
we have∣∣RW1,δ

t

Ûδ
1

(x, x′)−RWt
W (x, x′)

∣∣ ⩽ ∣∣RW1,δ
t

Ûδ
1

(x, x′)
∣∣+ ∣∣RWt

W (x, x′)
∣∣

⩽ Λθ
′,β′
Eθ′,β′

(a, t)λ
α−β′

4 · aχ(aβ′/2 + t−β/2)|x′ − x|2β′
,

where Λθ
′,β′ is the uniform upper bound on Θθ′,β′

(wδ) ∨ Θθ′,β′
(w) introduced in (6.101). In

view of the constraint (6.135) on the parameters, we can further write∣∣RW1,δ
t

Ûδ
1

(x, x′)−RWt
W (x, x′)

∣∣ ⩽ Λθ
′,β′
E(a, t)λ

α−β
4 · aχ|x′ − x|2β

·
(
aβ/2|x′ − x|2(β′−β) + t−β/2 · t−

β′−β
2 |x′ − x|2(β′−β)

)
.

Under the current case, we assume |x′ − x| ⩽ δη. Hence

|x′ − x|2(β′−β) ⩽ δ2η(β
′−β),

and since we also assume t > |x′ − x|2 we get

t−
β′−β

2 |x′ − x|2(β′−β) = t−
β′−β

2 |x′ − x|β′−β · |x′ − x|β′−β ⩽ δη(β
′−β).

As a result, we arrive at the following estimate whenever |x′ − x|2 < t ∧ δ2η:∣∣RW1,δ
t

Ûδ
1

(x, x′)−RWt
W (x, x′)

∣∣ ≲ Λθ
′,β′
E(a, t)λ

α−β
4 aχ(aβ/2 + t−β/2)|x′ − x|2β · δη(β′−β). (6.170)

Step 3: Case t ⩾ δ2 and |x′ − x| ⩾ δ. The following estimate is obtained in the same
way leading to the time-variation estimate in Lemma 6.17 and space-variation estimates in
Lemma 6.24, based on the local central limit theorem. We only state the final result here.
Namely we obtain that∣∣R0,δ

t (x, x′)−R0
t (x, x

′)
∣∣ ≲ E(a, t)

(
κ(Ûδ

1)dÛδ
1,W

(ṽδ, v) + Θ(v)ρ(Ûδ
1,W)

)
· aχ(aβ/2 + t−β/2)|x′ − x|2β . (6.171)

As far as the terms involving Pt in (6.145) are concerned, we first have∣∣∣ṽδt (x)P̂ δ
t Û

δ
1 (x, x

′)− vt(x)PtW (x, x′)
∣∣∣ ≤ A+ B, (6.172)

where A and B are respectively defined by

A =
∣∣ṽδt (x)∣∣ · ∣∣∣P̂ δ

t Û
δ
1 (x, x

′)− PtW (x, x′)
∣∣∣ (6.173)

B =
∣∣ṽδt (x)− vt(x)

∣∣ · ∣∣PtW (x, x′)
∣∣. (6.174)

According to Lemma 4.13, the quantity B is bounded as

B ≲ E(a, t)dÛδ
1,W

(ṽδ, v) · κ(W)aχt−β/2|x′ − x|2β. (6.175)

To estimate A, we further write∣∣∣P̂ δ
t Û

δ
1 (x, x

′)− PtW (x, x′)
∣∣∣

⩽
∣∣(P̂ δ

t − Pt
)
Û δ
1 (x, x

′)
∣∣+ ∣∣Pt(Û δ

1 −W
)
(x, x′)

∣∣ =: A1 +A2. (6.176)
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As in Lemma 4.13, the A2-term is easily estimated as∣∣Pt(Û δ
1 −W

)
(x, x′)

∣∣ ≲ ρ
(
Ûδ

1,W
)
aχt−β/2|x′ − x|2β. (6.177)

To estimate the A1-term, for simplicity we only consider the case when |x′ − x|2 > t (the
other case is treated in the same way as Case (i) in the proof of Lemma 4.13). Now for
|x′ − x|2 > t, we write(

P̂ δ
t − Pt

)
Û δ
1 (x, x

′) =

∫
R

(
p̂δ⌊t⌋(⌊y⌋)− pt(y)

) (
Û δ
1 (x

′ − y)− Û δ
1 (x− y)

)
dy. (6.178)

Recall from the local CLT (cf. Theorem 2.25) and the uniform Gaussian estimates (cf.
Proposition 2.26) for the heat kernels that∣∣p̂δ⌊t⌋(⌊y⌋)− pt(y)

∣∣ ≲ δ2

t3/2
, and

∣∣p̂δ⌊t⌋(⌊y⌋)∣∣ ∨ ∣∣pt(y)∣∣ ≲ 1√
t
e−Cy

2/t.

Plugging those inequalities into (6.178), it follows that

A1 ⩽
∫
R

∣∣p̂δ⌊t⌋(⌊y⌋)− pt(y)
∣∣1/2 · ∣∣p̂δ⌊t⌋(⌊y⌋)− pt(y)

∣∣1/2 · ∣∣Û δ
1 (x

′ − y)− Û δ
1 (x− y)

∣∣dy
≲

δ

t3/4
· t1/4 ·

∫
R

1√
t
e−Cy

2/2t
∣∣Û δ

1 (x
′ − y)− Û δ

1 (x− y)
∣∣dy

=
δ√
t
·
∫
R
e−Cw

2/2
∣∣Û δ

1 (x
′ −

√
tw)− Û δ

1 (x−
√
tw)
∣∣dw

≲
δ√
t
· aχκ(Ûδ

1) |x′ − x|α. (6.179)

Similar to the analysis leading to (4.92), we write

|x′ − x|α = t−β/2|x′ − x|2β · tβ/2|x′ − x|α−2β.

Noting that α− 2β < 0 and |x′ − x|2 > t in the current case, simple algebra shows that

tβ/2|x′ − x|α−2β < t
α−β
2 and t−β/2|x− x′|2β < tβ/2 ≤ T β/2.

Therefore we get
|x′ − x|α ≤ CT t

α−β
2 .

Plugging this inequality in (6.179) we obtain

A1 ≲ aχκ(Ûδ
1) ·

δ√
t
t
α−β
2 = aχκ(Ûδ

1) · δα−β ·
(
δ√
t

)1−(α−β)

⩽ aχκ(Ûδ
1) · δα−β, (6.180)

where the last inequality holds since t ⩾ δ2 in the current scenario. To summarise, we report
(6.180) and (6.177) into (6.176). This yields

A ≲ Θ(v)
(
κ(Ûδ

1)δ
α−β + ρ

(
Ûδ

1,W
))

· E(a, t)aχt−β/2|x′ − x|2β.

Together with (6.175) and recalling (6.172), we thus arrive at the following estimate:∣∣ṽδt (x)P̂ δ
t Û

δ
1 (x, x

′)− vt(x)PtW (x, x′)
∣∣ (6.181)

≲
[
Θ(v)

(
κ(Ûδ

1)δ
α−β + ρ(Ûδ

1,W)
)
+ κ(W)dÛδ

1,W
(ṽδ, v)

]
· E(a, t)aχt−β/2|x′ − x|2β.
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Now it remains to estimate the quantities Qδ
t (x, x

′), Kδ
t (x, x

′) defined by (6.148), (6.149)
respectively. We will divide those estimates in two substeps.
Step 3-1: estimate for Qδ

t . Our claim here is that whenever t ⩾ δ2 and |x′ − x| ⩾ δ we have:

|Qδ
t (x, x

′)| ≲ κ(Ûδ
1)a

χt−β/2|x′ − x|2β · δα−β. (6.182)

In order to prove (6.182), we return to the expression of Qδ
t (x, x

′) in terms of ∇2,δ
x . Namely

invoking the discrete heat equation (2.78) in (6.148) we get

Qδ
t (x, x

′) =
(t− ⌊t⌋)σ2

2

∫
R
∇2,δ
x p̂δ⌊t⌋(⌊ξ − y⌋)Û δ

1 (y)dy
∣∣x′
x
. (6.183)

We now split the discussion in two cases.
Case A: |x′ − x|2 ⩾ t. In this case, set y = ξ −

√
tw in (6.183). We obtain

Qδ
t (x, x

′) =
(t− ⌊t⌋)σ2

2

∫
R
∇2,δ
x p̂δ⌊t⌋(⌊

√
tw⌋)

(
Û δ
1 (x

′ −
√
tw)− Û δ

1 (x−
√
tw)
)√

tdw.

We resort to the fact that t − ⌊t⌋ ⩽ δ2 and to the Hölder continuity of Û δ
1 . Taking into

account the upper bound (2.80), which reads∣∣∇2,δ
x p̂δ⌊t⌋(⌊

√
tw⌋)

∣∣ ≲ 1

t3/2
e−Cw

2

for all t ⩾ δ2, w ∈ R,

we end up with

Qδ
t (x, x

′) ≲ δ2 · κ(Ûδ
1)a

χ · t−1|x′ − x|α

= κ(Ûδ
1)a

χ · t−β/2|x′ − x|2β · δ2 · tβ/2−1|x′ − x|α−2β.

Moreover, since we assume |x− x′|2 ⩾ t and we have α < 2β, we discover that

Qδ
t (x, x

′) ≲ κ(Ûδ
1)a

χ · t−β/2|x′ − x|2β · δ2 · tβ/2−1tα/2−β

= κ(Ûδ
1)a

χ · t−β/2|x′ − x|2β · δ2 · tα/2−β/2−1.

Eventually recall that t > δ2 in this step, and α− β − 2 < 0. This yields

Qδ
t (x, x

′) ≲ κ(Ûδ
1)a

χt−β/2|x′ − x|2β · δα−β, (6.184)

which is compatible with our claim (6.143).
Case B: |x′ − x|2 < t. Since

∫
R ∇

2,δ
x p̂δ⌊t⌋(y)dy = 0, we can insert this quantity in the expres-

sion (6.183) for Qδ
t (x, x

′). This yields

Qδ
t (x, x

′) =
(t− ⌊t⌋)σ2

2

∫
R

(
∇2,δ
x p̂δ⌊t⌋(⌊x′ − y⌋)−∇2,δ

x p̂δ⌊t⌋(⌊x− y⌋)
) (
Û δ
1 (y)− Û δ

1 (x)
)
dy

=
(t− ⌊t⌋)σ2

2

∫
R

∫ ⌊x′−y⌋

⌊x−y⌋
∇̃3,δp̂δ⌊t⌋(⌊z⌋)

(
Û δ
1 (y)− Û δ

1 (x)
)
dzdy, (6.185)

where the discrete gradient ∇̃3,δ is given by (2.76):

(∇̃3,δf)(x) ≜
(∇2,δ

x f)(x+ δ)− (∇2,δ
x f)(x)

δ
.
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Moreover, the third order difference ∇̃3,δp̂δ⌊t⌋(⌊z⌋) also satisfies the uniform Gaussian estimate
in Proposition 2.26. Namely we have∣∣∇̃3,δp̂δ⌊t⌋(⌊z⌋)

∣∣ ≲ 1

t2
e−Cz

2/t for all t ⩾ δ2, z ∈ R. (6.186)

Suppose that ⌊x− y⌋ and ⌊x′ − y⌋ have the same sign, say

⌊x− y⌋ ⩾ ⌊x′ − y⌋ ⩾ 0.

Since |x′ − x| ⩾ δ under the current discussion, it is easily seen that∫ ⌊x−y⌋

⌊x′−y⌋
e−Cz

2/tdz ≲ |x′ − x|e−C(x′−y)2/t. (6.187)

Plugging (6.186) and (6.187) into (6.185), we obtain

|Qδ
t (x, x

′)| ≲ δ2t−2|x′ − x| ·
∫
R
e−C(x′−y)2/t ·

∣∣Û δ
1 (y)− Û δ

1 (x)
∣∣dy

= δ2t−3/2|x′ − x| ·
∫
R
e−Cw

2∣∣Û δ
1 (x

′ −
√
tw)− Û δ

1 (x)
∣∣dw, (6.188)

where we have set y = x′−
√
tw for the second identity. Next, owing to the Hölder regularity

of Û δ
1 and invoking |x′ − x| ⩽

√
t again (also noting x, x′ ∈ [−a, a] and a ⩾ 1), we have∣∣Û δ

1 (x
′ −

√
tw)− Û δ

1 (x)
∣∣ ⩽ κ(Ûδ

1)(|x′|+ |x|+
√
t|w|)χ · (|x′ − x|+

√
t|w|)α

⩽ κ(Ûδ
1)(2a+

√
T |w|)χ · (

√
t+

√
t|w|)α

⩽ κ(Ûδ
1)a

χtα/2(2 + 2
√
T |w|)χ(1 + |w|)α. (6.189)

Reporting this inequality into (6.188), we can write

|Qδ
t (x, x

′)| ≲ κ(Ûδ
1)a

χ · δ2tα/2−3/2|x′ − x|

= κ(Ûδ
1)a

χt−β/2|x′ − x|2β · δ2tα/2+β/2−3/2|x′ − x|1−2β.

Now recall once more that |x′ − x| <
√
t and t ⩾ δ2. We thus obtain

|Qδ
t (x, x

′)| ≲ κ(Ûδ
1)a

χt−β/2|x′ − x|2β · δ2tα/2−β/2−1

⩽ κ(Ûδ
1)a

χt−β/2|x′ − x|2β · δα−β. (6.190)

This fits our claim (6.171) when ⌊x − y⌋ and ⌊x′ − y⌋ have the same sign. If ⌊x − y⌋ and
⌊x′ − y⌋ have different signs, say

x− y ⩽ 0 ⩽ x′ − y ⇐⇒ x ⩽ y ⩽ x′,

then we simply bound (owing to (6.186)) the quantity ∇̃3,δp̂δ⌊t⌋ by t−2. Plugging this crude
estimate in (6.185) we get

Qδ
t (x, x

′) ≲ δ2t−2|x′ − x| ·
∫ x′

x

∣∣Û δ
1 (y)− Û δ

1 (x)
∣∣dy

⩽ δ2t−2|x′ − x|2 · κ(Ûδ
1)a

χ|x′ − x|α

= κ(Ûδ
1)a

χt−β/2|x′ − x|2β · δ2t−2+β/2|x′ − x|2+α−2β.
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Thanks to the assumption |x′ − x| <
√
t and t ⩾ δ2, we get

Qδ
t (x, x

′) ≲ κ(Ûδ
1)a

χt−β/2|x′ − x|2β · δα−β. (6.191)

Gathering (6.190), (6.191) and (6.184), we have thus obtained an inequality for Qδ
t (x, x

′)
which is compatible with (6.171).
Step 3-2: Estimate for Kδ. Let us focus our attention on the term Kδ(x, x′) defined
by (6.149). Here under the current case, if |x′ − x| ⩾

√
t, we assert that

|Kδ(x, x′)| ≲ κ(Ûδ
1)a

χt−β/2|x′ − x|2β · δα−β. (6.192)

If |x′ − x| ⩾ δτ where τ ∈ (0, 1) is a given number to be chosen later on, we will see that

|Kδ(x, x′)| ≲ κ(Ûδ
1)a

χt−β/2|x′ − x|2β · δα−2βτ . (6.193)

The proof of those claims goes as follows: by the definition of Kδ(x, x′), we can write

Kδ(x, x′) =

∫
R
p̂δ0(⌊y⌋)

(
Û δ
1 (x

′, x′ − y)− Û δ
1 (x, x− y)

)
dy

=
1

δ

(∫ δ

0

Û δ
1 (x

′, x′ − y)dy −
∫ δ

0

Û δ
1 (x, x− y)dy

)
.

As a result, we have

|Kδ(x, x′)| ⩽ 1

δ

∫ δ

0

(
|Û δ

1 (x
′, x′ − y)|+ |Û δ

1 (x, x− y)|
)
dy.

By using the standard α-Hölder estimate for Û δ
1 , we obtain that

|Kδ(x, x′)| ≲ κ(Ûδ
1)a

χδα.

If |x′ − x| ⩾
√
t, since t ⩾ δ2 we can further write

δα = δα|x′ − x|−2β|x′ − x|2β ⩽ δαt−β|x′ − x|2β ⩽ t−β/2|x′ − x|2β · δα−β,

which leads to (6.192). If |x′ − x| ⩾ δτ , we have

δα = δα−2βτδ2βτ tβ/2t−β/2 ⩽ CT |x′ − x|2βt−β/2 · δα−2βτ ,

which leads to (6.193).
Step 4: Conclusion. We first remark that Steps 1, 2 and 3 above cover all possibilities.
Indeed, the complement of Steps 1, 3 is the case when t ⩾ δ2 and |x′ − x| < δ. But this
situation is contained in Step 2:

t ⩾ δ2, |x′ − x| < δ =⇒ |x′ − x|2 < t ∧ δ2τ

since τ ∈ (0, 1). In view of the estimates (6.170) and (6.193), we now choose τ to be such
that

τ(β′ − β) = α− 2βτ ⇐⇒ τ =
α

β′ + β
.

The resulting rate is δr with r = α
β′+β

(β′ − β). Combining all the ingredients obtained so
far, the desired estimate (6.143) follows. □
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6.5. Developing Step 2: comparing J δ and η. In Section 6.1 we mentioned that the
convergence of ṽδ to v also relied on the convergence of a series of deterministic type terms.
Specifically, consider the path η defined by (6.6). This path is approximated by the discrete
process J δ

t introduced in (6.12). The second step of the strategy recalled in Section 6.1 leads
to inequality (6.18). We will detail this step now. Our estimate on the controlled distance
between J δ and η is summarized in the proposition below.

Proposition 6.28. Let α, β, χ, θ be exponents satisfying condition (3.20). We consider fixed
coefficients θ′ < θ and β′ ∈ (β, α). The upper bound Λθ

′,β′ on the rough path norms of W1,δ

and W is given by (6.101). Recall that J δ is introduced in (6.12), while η is the path given
by (6.6). Then we have

dÛδ
1,W

(J δ, η) ⩽ C

(
(∥f0∥C3

L
+ ∥g∥C3

L
)δβ + (1 + κ(Ûδ

1))λ
α−β
4 (Λθ

′,β′
δ

β′(β′−β)

β′+β + Λθ
′,βδα−2χ)

)
.

(6.194)

The rest of this subsection is devoted to the proof of Proposition 6.28, for which we now
outline a strategy. In view of the definition of dÛδ,W(J δ, η), the comparison between J δ and
η boils down to estimating four types of differences: uniform, time-variation, space-variation
and remainder. Since a substantial part of the analysis here is a technical repetition of the
previous section (indeed it is simpler than Step 3 except for the estimation of one term
which we will point out later on), for most of the time we will only consider uniform distance
estimates. In addition, we will only consider J δ

t (x)− ηt(x) on grid points (t, x) ∈ δ2N× δZ.
The adaptation to non-grid points is easy since ṽδt (x) is defined through piecewise linear
interpolation (cf. Definition 6.2).

6.5.1. A decomposition of J δ
t (x). Recall that in (6.12), the quantity J δ

t was implicit. As
a starting point, we shall first compute J δ

t (x) explicitly. This is the content of the lemma
below.

Lemma 6.29. Recall that vδtk(x) is the discrete process defined by (6.1), in which ηδtk(x) and
Iδtk(x, y) are given by (6.2) and (6.4) respectively. For each (tk, x) ∈ δ2N× δZ, we have

J δ
tk
(x) =

1

2

(
ηδtk(x) + ηδtk+1

(x)
)
+

1

2

(
vδtk(x)− vδtk+1

(x)
)
+ Eδtk(x). (6.195)

The function Eδtk(x) in the above equation is an error term defined by

Eδtk(x) = E1,δ
tk

(x) + E2,δ
tk

(x),

where E1,δ and E2,δ are respectively given by

E1,δ
tk

(x) ≜ −1

4
δ3
∑
z∈δZ

∇2,δ
x p̂δtk(⌊x− z⌋)Iδ0(x, z) (6.196)

E2,δ
tk

(x) ≜ −1

2

∫ tk

0

∫
R
∇2,δ
x p̂δ⌊s⌋(⌊x− y⌋)

(∫ ⌊y⌋+δ

y

ṽδtk−s(z)dÛ
δ(z)

)
dyds. (6.197)
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Proof. Using the definition (6.12) of J δ
tk
(x), we first write

J δ
tk
(x) = ṽδtk(x) +

1

2

∫ tk

0

∫
R
∇2,δ
x p̂δ⌊tk−s⌋(⌊x− y⌋)

(∫ ⌊y⌋+δ

x

ṽδs(z)dÛ
δ(z)

)
dyds+ E2,δ

tk
, (6.198)

where E2,δ
tk

(x) is defined by (6.197). Next, due to the fact that both tk and x are on the grid
δ2N× δZ, the integral on the right hand side of (6.198) can further be expressed as

Gδtk(x) ≡ 1

2

∫ tk

0

∫
R
∇2,δ
x p̂δtk−s(⌊x− y⌋)

(∫ ⌊y⌋+δ

x

ṽδs(z)dÛ
δ(z)

)
dyds

=
δ

2

k∑
j=1

∑
z∈δZ

∫ tj

tj−1

∇2,δ
x p̂δ⌊tk−tj⌋(x− z)

(∫ z

x

ṽδs(w)dÛ
δ(w)

)
ds. (6.199)

Since s 7→ ṽδs(z) is linear on [tj−1, tj] by definition, it is easily seen that∫ tj

tj−1

ṽδs(w)ds =
δ2

2

(
ṽδtj−1

(w) + ṽδtj(w)
)
.

As a result, the term Gδtk in (6.199) satisfies

Gδtk(x) =
δ

2

k∑
j=1

∑
z∈δZ

∇2,δ
x p̂δtk−tj(x− z)

∫ z

x

δ2

2

(
ṽδtj−1

(w) + ṽδtj(w)
)
dÛ δ(w). (6.200)

By using the piecewise linear construction of ṽδtj−1
(w) and Û δ(w), given respectively in (6.9)

and (5.2), it is easily checked that∫ z

x

ṽδtj−1
(w)dÛ δ(w) =

∑
u∈Jx+δ,zK

∫ u

u−δ

(u− w)vδtj−1
(u− δ) + (w − u+ δ)vδtj−1

(u)

δ
× Ū δ(u)

δ
dw

=
∑

u∈Jx+δ,zK

vδtj−1
(u− δ) + vδtj−1

(u)

2
Ū δ(u) = Iδtj−1

(x, z).

where the last equality is a direct consequence of (6.4). By substituting this into the expres-
sion (6.200), we obtain that

Gδtk(x) =
δ3

2

k∑
j=1

∑
z∈δZ

∇2,δ
x p̂δtk−tj(x− z)×

Iδtj−1
(x, z) + Iδtj(x, z)

2
.

Hence going back to (6.199) and (6.198), we end up with

J δ
tk
(x) = vδtk(x) +

δ3

2

k∑
j=1

∑
z∈δZ

∇2,δ
x p̂δtk−tj(x− z)×

Iδtj−1
(x, z) + Iδtj(x, z)

2
+ E2,δ

tk
(x), (6.201)

where we note that ṽδtk(x) = vδtk(x) since (tk, x) is assumed to be a grid point.
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On the other hand, by using the discrete equation (6.1) for vδtk(x), it is seen that

δ3

2

k∑
j=1

∑
z∈δZ

∇2,δ
x p̂δtk−tj(x− z)×

Iδtj−1
(x, z) + Iδtj(x, z)

2

=
1

2

(
ηδtk(x) + ηδtk+1

(x)
)
− 1

2

(
vδtk(x) + vδtk+1

(x)
)
+ E1,δ

tk
(x), (6.202)

where E1,δ
tk

(x) is defined by (6.196). By substituting (6.202) into (6.201), the desired decom-
position (6.195) thus follows. □

In view of Lemma 6.29, in order to compare J δ with η, it is clear that there are three
main ingredients to be developed:
(i) compare 1

2

(
ηδt (x) + ηδt+δ2(x)

)
with ηt(x);

(ii) show that vδt+δ2(x)− vδt (x) is small;
(iii) show that the error term Eδt (x) is small.
We now implement these three steps separately.

6.5.2. Comparing 1
2

(
ηδt (x) + ηδt+δ2(x)

)
with ηt(x). We begin our comparison procedure by

looking at the difference between 1
2

(
ηδt (x) + ηδt+δ2(x)

)
and ηt(x). Notice that the analysis of

this term is easy, since it only involves the input functions f0(x), gt(x) as well as the heat
kernels. The resulting estimate is summarised in the lemma below.

Lemma 6.30. Let f0, g ∈ C3
L be given functions with some L > 0. Recall that η and ηδ are

respectively defined by (6.6) and (6.2). The distance dÛδ,W is introduced in (6.11). Then we
have

dÛδ
1,W

(
1

2
(ηδ· (·) + ηδ·+δ2(·)), η

)
⩽ C ·

(
∥f0∥C3

L
+ ∥g∥C3

L

)
· δβ. (6.203)

Proof. For simplicity, we only discuss the remainder estimate for the f0-part. Estimates of
all other parts are routine repetitions of the same kind of analysis. More specifically, let us
define

η1,δt (x) ≜ δ
∑
y∈δZ

∇1,δ
x p̂δt (x− y)f0(y), and η1t (x) ≜

∫
R
∂xpt(x− y)f0(y)dy

respectively. We want to estimate the difference η1,δt (x, x′)− η1t (x, x
′) where t ∈ (0, T ] ∩ δ2N

and x, x′ ∈ [−a, a] ∩ δZ. For this purpose, we first resort to a discrete integration by parts
like in Proposition 2.24. Hence η1,δ can be recast as

η1,δt (x) = δ
∑
y∈δZ

∇1,δ
x f0(x− y)p̂δt (y) =

∫
R
∇1,δf0(⌊x− y⌋)p̂δt (⌊y⌋)dy. (6.204)

In the same way, due to our regularity assumption on f , a simple integration by parts yields

η1t (x) =

∫
R
∂xf0(x− y)pt(y)dy. (6.205)
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We now express the increments η1,δt (x, x′), Thanks to (6.204) and a change of variable y =√
tw, we get

η1,δt (x, x′) =

∫
R
p̂δt (⌊y⌋)

(
∇1,δf0(⌊x′ − y⌋)−∇1,δf0(⌊x− y⌋)

)
dy

=

∫
R

√
tp̂δt (⌊

√
tw⌋)

(
∇1,δf0(⌊x′ −

√
tw⌋)−∇1,δf0(⌊x−

√
tw⌋)

)
dy (6.206)

Similarly, by using (6.205) we also have

η1t (x, x
′) =

∫
R
pt(y) (∂xf0(x

′ − y)− ∂xf0(x− y)) dy

=

∫
R
pt(y)

(∫ x′

x

∂2xxf0(z − y)dz

)
dy =

∫
R
p1(w)

(∫ x′

x

∂2xxf0(z −
√
tw)dz

)
dw. (6.207)

Putting together (6.206) and (6.207), we thus obtain the identity

η1,δt (x, x′)− η1t (x, x
′) = At(x, x

′) +Bt(x, x
′),

where At(x, x′) and Bt(x, x
′) are respectively defined by

At(x, x
′) ≜

∫
R

(√
tp̂δt (⌊

√
tw⌋)− p1(w)

)(∫ x′

x

∂2xxf0(z −
√
tw)dz

)
dw, (6.208)

Bt(x, x
′) ≜

∫
R

√
tp̂δt (⌊

√
tw⌋)Mx,x′(

√
tw)dw, (6.209)

where for a ∈ R we define

Mx,x′(a) = ∇1,δf0(⌊x′ − a⌋)−∇1,δf0(⌊x− a⌋)−
∫ x′

x

∂2xxf0(z − a)dz.

We will now estimate the terms At(x, x′) and Bt(x, x
′). Let us start by estimating the term

At(x, x
′) introduced in (6.208). In order to bound this term, we proceed as in Section 6.4.1.

Namely we write p̂δ in terms of the discrete kernel pd and we invoke Theorem 2.25. We let
the patient reader check that∣∣∣√tp̂δt (⌊√tw⌋)− p1(w)

∣∣∣ ⩽ C1 ·
δ√
t
e−C2w2

,

for all t ⩾ δ2 and w ∈ R. Plugging this inequality into (6.208), it follows that∣∣At(x, x′)∣∣ ⩽ C1
δ√
t

∫
R
e−C2w2

(∫ x′

x

∣∣∂2xxf0(z −√
tw)
∣∣dz) dw.

In addition, the right hand side above can be bounded invoking the fact that f ∈ C3
L and

Definition 6.4 we obtain ∣∣At(x, x′)∣∣ ⩽ C3
δ√
t
· |x− x′| · aL∥f0∥C3

L
.
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Whenever t ⩾ δ2 and x ∈ [−a, a] we thus get∣∣At(x, x′)∣∣ ⩽ C3t
−β/2δβ|x′ − x|2β · aL+1−2β∥f0∥C3

L

⩽ C4∥f0∥C3
L
E(a, t)aχt−β/2|x′ − x|2β · δβ, (6.210)

where we have absorbed some power of a into E(a, t) term for the last step.
Next, we estimate Bt(x, x

′) in (6.209). By the definition of ∇1,δ
x , it is easily seen that

∇1,δf0(⌊x′ −
√
tw⌋)−∇1,δf0(⌊x−

√
tw⌋)

=
f0(x

′ + δ − ⌊
√
tw⌋)− f0(x+ δ − ⌊

√
tw⌋)

δ
− f0(x

′ − ⌊
√
tw⌋)− f0(x− ⌊

√
tw⌋)

δ

=

∫ x′

x

∂xf0(z + δ − ⌊
√
tw⌋)− ∂xf0(z − ⌊

√
tw⌋)

δ
dz

=

∫ x′

x

(∫ 1

0

∂2xxf0(z + θδ − ⌊
√
tw⌋)dθ

)
dz.

Using again Definition 6.4 and our assumption f0 ∈ C3
L, it follows that∣∣∣Mx,x′(

√
tw)
∣∣∣ = ∣∣∣∇1,δf0(⌊x′ −

√
tw⌋)−∇1,δf0(⌊x−

√
tw⌋)−

∫ x′

x

∂2xxf0(z −
√
tw)dz

∣∣∣
=

∣∣∣∣∣
∫ x′

x

∫ 1

0

(
∂2xxf0(z + θδ − ⌊

√
tw⌋)− ∂2xxf0(z −

√
tw)
)
dθdz

∣∣∣∣∣
⩽ C∥f0∥C3

L
aL · |x′ − x| · δ · (1 + |w|)L. (6.211)

In addition, recall from (6.61) that∣∣√tp̂δt (⌊√tw⌋)∣∣ ⩽ Ce−C2w2

. (6.212)

By substituting (6.211) and (6.212) into the expression (6.209) of Bt(x, x
′), we can bound it

as ∣∣Bt(x, x
′)
∣∣ ⩽ C∥f0∥C3

L
aL|x′ − x| · δ.

Now one can perform the same kind of manipulation as for (6.210) in order to get∣∣Bt(x, x
′)
∣∣ ⩽ C∥f0∥C3

L
aL+1−2β|x′ − x|2β · δ

⩽ C∥f0∥C3
L
E(a, t)aχ+β/2|x′ − x|2β · δ. (6.213)

By putting (6.210) and (6.213) together, we obtain the remainder estimate for η1,δ − η1,
which contributes to one term in the rough path distance. All other terms (uniform distance,
spatial and time variations) and also the g(t, x)-part are dealt with in a similar way. The
resulting estimate is given by (6.203). □

6.5.3. Estimating vδt+δ2(x) − vδt (x). This part requires some care since we do not view t 7→
vδt (·) as a Hölder-continuous path taking values in spatial rough paths. As opposed to that,
we shall consider the path Gδ

t = vδt+δ2(x) − vδt (x) as an element of the (discrete) space Bθ,λ
which is introduced in Definition 3.9, and we will prove that the norm of Gδ is small. Our
estimate is summarized in the following lemma.



RANDOM WALKS IN RANDOM ENVIRONMENT 113

Lemma 6.31. In the decomposition (6.195), let Gδ be the path given by

Gδ
t (x) ≡ vδt+δ2(x)− vδt (x), (6.214)

defined for (t, x) ∈ δ2N× δZ. We consider G as a discrete path controlled by Ûδ
1, with a null

derivative. Pick α, β, χ satisfying (3.20), as well as θ′ < θ and β′ ∈ (β, α), so that for all
a ⩾ 1 and t ∈ [0, T ] we have

Eθ′(a, t)aβ
′/2 ⩽ Eθ(a, t)aβ/2, (6.215)

where we recall that Eθ(a, t) = eλt+θa+θat. As usual we choose γ = (α − β)/4 and λ is such
that (6.8) is fulfilled. The controlled norms Θ are introduced in (3.27). Then we have

Θθ′,λ(Gδ) ⩽ CΛθ
′,β′

(1 + κ(Ûδ
1))λ

α−β
4 · δ

β′(β′−β)

β′+β . (6.216)

Proof. As usual, based on the definition of our rough path metric, we need to develop four
types of estimates. We again use the trick of adjusting exponents based on the uniform
boundedness of vδt (x) proved in Proposition 6.14.
Step 1: uniform estimate. Let θ′ < θ and β′ ∈ (β, α) be fixed parameters such that (6.215)
is verified. In particular for all a ⩾ 1 and t ∈ [0, T ] we have

Eθ′(a, t)aβ
′/2 ⩽ Eθ(a, t) ∀a ⩾ 1, t ∈ [0, T ].

It follows from Proposition 6.14 that∣∣Gδ
t (x)

∣∣ ⩽ Λθ
′,β′
Eθ′(a, t)aβ

′/2δβ
′
⩽ Λθ

′,β′
Eθ(a, t)δβ

′
, (6.217)

where Λθ
′,β′ denotes a uniform upper bound of Θθ′,λ(vδ). This gives the uniform estimate in

the definition of the rough path norm of (t, x) 7→ Gδ
t (x).

Step 2: time variation estimate. We simply decompose the time variation as follows for
s, t ∈ δ2N and x ∈ δZ:∣∣Gδ

t (x)−Gδ
s(x)

∣∣ ⩽ ∣∣vδt+δ2(x)− vδt (x)
∣∣+ ∣∣vδs+δ2(x)− vδs(x)

∣∣.
Next we recall that (θ′, β′) are chosen as in (6.215). Invoking the δ-uniform bound on vδ

obtained in Proposition 6.14, we get∣∣Gδ
t (x)−Gδ

s(x)
∣∣ ⩽ 2Λθ

′,β′
Eθ(a, t)aβ/2δβ

′
= 2Λθ

′,β′
Eθ(a, t)aβ/2δβδβ

′−β.

Since s, t on the grid δ2N, satisfy t− s ⩾ δ2, we discover that∣∣Gδ
t (x)−Gδ

s(x)
∣∣ ⩽ 2Λθ

′,β′
Eθ(a, t)aβ/2|t− s|β/2 · δβ′−β. (6.218)

Step 3: the space variation estimate. This term is handled exactly like the time increment
in Step 2. We let the reader check that for all x, x′ ∈ [−a, a] and t ∈ δ2N we have∣∣Gδ

t (x, x
′)
∣∣ ⩽ 2Λθ

′,β′
Eθ(a, t)aβ/2|x′ − x|β · δβ′−β. (6.219)

Step 4: remainder term and conclusion. Since our term ansatz stipulates that the derivative
∂Ûδ vanishes, we are now left with an estimate of the remainder for Gδ. This is achieved by
elaborating on the upper bound (6.219) in order to get a second order estimate in x′ − x.
This step is detailed in Lemma 6.32 below for the sake of clarity. Gathering this lemma and
(6.217)-(6.218)-(6.219), this finishes the proof of our claim (6.216). □
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We now state and prove the announced estimate of the remainder for the controlled process
Gδ defined above.

Lemma 6.32. Under the same conditions as for Lemma 6.22, let t ∈ L0, T K and x, x′ ∈
J−a, aK. Also recall that the path Gδ is defined by (6.214). Then we have∣∣Gδ

t (x, x
′)
∣∣ ⩽ CΛθ

′,β′
(1 + κ(Ûδ

1))E
θ(a, t)λ

α−β
4 aχ(aβ/2 + t−β/2)|x′ − x|2β · δ

β′(β′−β)

β′+β . (6.220)

Proof. We divide the discussion into three (not necessarily disjoint) cases. Note that such
type of consideration already appears in the proof of Lemma 6.25. In the sequel τ is a
parameter in [0, 1] which will be chosen appropriately.
Case I: |x′ − x| ⩾ δτ . In this case we decompose Gδ

t (x, x
′) as∣∣Gδ

t (x, x
′)
∣∣ ⩽ ∣∣Gδ

t (x)
∣∣+ ∣∣Gδ

t (x
′)
∣∣. (6.221)

Then for x, x′ ∈ J−a, aK one can apply the uniform estimate (6.217) and obtain∣∣Gδ
t (x, x

′)
∣∣ ⩽ CΛθ

′,β′
Eθ(a, t)aβ/2δβ

′
. (6.222)

One can then conclude by invoking the fact that δτ ⩽ |x′ − x|. That is we get∣∣Gδ
t (x, x

′)
∣∣ ⩽ CΛθ

′,β′
Eθ(a, t)aβ/2δ2τβ · δβ′−2τβ

⩽ CΛθ
′,β′
Eθ(a, t)aβ/2|x′ − x|2β · δβ′−2τβ. (6.223)

Case II: |x′ − x| ⩾
√
t. We choose β′, θ′ such that (6.215) is verified. Then we start our

estimation procedure like in (6.221), which yields inequality (6.222). Now one can decompose
the right hand side of (6.222) in order to get∣∣Gδ

t (x, x
′)
∣∣ ⩽ CΛθ

′,β′
Eθ(a, t)aχt−β/2|x′ − x|2β · δβ′|x′ − x|−2βtβ/2.

Next we resort to the fact that |x′ − x| ⩾
√
t to write∣∣Gδ

t (x, x
′)
∣∣ ⩽CΛθ′,β′

Eθ(a, t)aχt−β/2|x′ − x|2β · δβ′
t−β/2

=CΛθ
′,β′
Eθ(a, t)aχt−β/2|x′ − x|2β · δβ′−β · δβt−β/2.

Eventually, thanks to the relation t ≥ δ2 we obtain a relation which is similar to (6.223):∣∣Gδ
t (x, x

′)
∣∣ ⩽ CΛθ

′,β′
Eθ(a, t)aχt−β/2|x′ − x|2β · δβ′−β. (6.224)

Case III: |x′ − x| ⩽
√
t ∧ δτ . Recall that in (6.142) we have written a decomposition for the

process ṽδt . Specialized on the grid δ2N× δZ this can be read as

vδt+δ2(x, x
′)− vδt (x, x

′) = −2
(
vδt+δ2(x)− vδt (x)

)
Û δ
1 (x, x

′)+Rvδ
t+δ2 (x, x′)−Rvδt (x, x′), (6.225)

where we have written Rvδt instead Rvδt
Ûδ

1

in order to alleviate our notation. We now bound
the two terms in the right hand side of (6.225).

In order to bound the derivative term in the right hand side of (6.225), consider again
θ′ < θ and β′ ∈ (β, α). Then invoking Proposition 6.14 and the fact that κ(Ûδ

1) is uniformly
bounded in δ, we get∣∣ (vδt+δ2(x)− vδt (x)

)
Û δ
1 (x, x

′)
∣∣ ⩽ CΛθ

′,β′
κ(Ûδ

1)E
θ′(a, t)aχ+β

′/2δβ
′|x′ − x|α. (6.226)
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Recall that we are now dealing with the case |x− x′| ⩽ δτ and x, x′ ∈ J−a, aK. However, we
also have |x′ − x| ≥ δ, due to the fact that both x and x′ belong to the grid δZ. Therefore
one is enabled to write

δβ
′|x′ − x|α = δβ

′−β|x′ − x|2β
(

δ

|x′ − x|

)β
|x′ − x|α−β ⩽ δβ

′−β|x′ − x|2βaα−β .

Reporting this inequality in the right hand side of (6.226) yields∣∣ (vδt+δ2(x)− vδt (x)
)
Û δ
1 (x, x

′)
∣∣ ⩽ CΛθ

′,β′
κ(Ûδ

1)E
θ′(a, t)aχ+β

′/2+α−β|x′ − x|2βδβ′−β. (6.227)

In addition, we have assumed that (6.215) is verified. Hence we obtain

Eθ′(a, t)aχ+β
′/2+α−β ⩽ CEθ(a, t)aχ+β/2.

Plugging this information into (6.227), it follows that∣∣ (vδt+δ2(x)− vδt (x)
)
Û δ
1 (x, x

′)
∣∣ ⩽ CΛθ

′,β′
κ(Ûδ

1)E
θ(a, t)aχ+β/2|x′ − x|2β · δβ′−β. (6.228)

We now turn to an estimate of the remainder terms in (6.225). We shall bound each term
in the difference individually, namely write∣∣Rvδ

t+δ2 (x, x′)−Rvδt (x, x′)
∣∣ ⩽ ∣∣Rvδ

t+δ2 (x, x′)
∣∣+ ∣∣Rvδt (x, x′)

∣∣ .
Then we resort to Proposition 6.14 and the definition of Θθ′,λ in (3.27) in order to obtain∣∣Rvδ

t+δ2 (x, x′)−Rvδt (x, x′)
∣∣ ⩽ CΛθ

′,β′
Eθ′(a, t)λγ

′
aχ(aβ

′/2 + t−β
′/2)|x′ − x|2β′

. (6.229)

where γ′ ≜ α−β′

4
. Since |x′ − x| ⩽ δτ , we have

|x′ − x|2β′
= |x′ − x|2β · |x′ − x|2β′−2β ⩽ |x′ − x|2β · δ2τ(β′−β).

In addition, since |x′ − x| ⩽
√
t, we also have

t−β
′/2|x′ − x|2β′

= t−β/2|x′ − x|2β · t−(β′−β)/2|x′ − x|2(β′−β)

⩽ t−β/2|x′ − x|2β · |x′ − x|β′−β ⩽ t−β/2|x′ − x|2β · δτ(β′−β).

Reporting those values into (6.229) and recalling that (6.215) holds true we end up with∣∣Rvδ
t+δ2 (x, x′)−Rvδt (x, x′)

∣∣ ⩽ CΛθ
′,β′
λγ

′
Eθ(a, t)aχ(aβ/2 + t−β/2)|x′ − x|2β · δτ(β′−β). (6.230)

Hence gathering (6.228) and (6.230) into (6.225), we have obtained∣∣vδt+δ2(x, x′)−vδt (x, x′)∣∣ ⩽ CΛθ
′,β′
κ(Ûδ

1)λ
γ′Eθ(a, t)aχ(aβ/2+ t−β/2)|x′−x|2β ·δτ(β′−β). (6.231)

Combining cases I to III, it is not hard to see that the optimal choice of τ is such that

β′ − 2τβ = τ(β′ − β) ⇐⇒ τ =
β′

β′ + β
.

The resulting δ-factors is then found to be δ
β′(β′−β)

β′+β . This completes the proof of the lemma.
□
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6.5.4. Estimating Eδt (x). The last term we have to estimate in order to quantify the conver-
gence of J δ in (6.194) is Eδtk . We label another lemma in that direction

Lemma 6.33. In the decomposition (6.195), consider the term

Eδt (x) = E1,δ
t (x) + E2,δ

t (x), (6.232)

which is defined for (t, x) ∈ δ2N× δZ and where E1,δ
t , E2,δ

t are introduced in (6.196)- (6.197).
We pick α, β, χ satisfying (3.20) as well as θ′ < θ such that

Eθ′(a, t)a2χ+β/2 ⩽ Eθ(a, t) ∀a ⩾ 1, t ∈ [0, T ]. (6.233)

Then we have
Θθ′,λ(Eδ) ⩽ C(1 + κ(Û δ

1 ))Λ
θ′,βλ

α−β
4 δα−2χ. (6.234)

Proof. Unlike for Lemma 6.31, we will not give details for all four terms defining the norm
Θ. For the sake of conciseness, we just focus here on estimating

S(Eδ) ≡ sup
{
Eδr ; r ∈ J0, tK, x ∈ J−a, aK

}
, (6.235)

which is a part of JEδKJ0,tK×J−a,aK in (3.27). Details are left to the reader for the other terms.

Let us first give an estimate for the term E1,δ
t in (6.196). To this aim, we write the discrete

integral in the right hand side of (6.196) as continuous one:

E1,δ
t (x) = −δ

2

4

∫
R
∇2,δ
x p̂δt (⌊x− y⌋)

∫ ⌊y⌋

x

ṽδ0(w)dÛ
δ(w)dy.

Thanks to this expression and the Û δ-decomposition (5.4), one can perform the same kind of
analysis as in Section 6.4.1 (for the Û δ

1 part) and Proposition 6.14 (for the Û δ
2 ). This yields∣∣E1,δ

t (x)
∣∣ ⩽ C(κ(Ûδ

1) +
√
δ)E(a, t)Θ(ṽδ) · δ2. (6.236)

Next, we handle the term E2,δ
t in (6.197). Again the Û δ

2 -part is (trivially) controlled by

C
√
δE(a, t)Θ(ṽδ).

We therefore focus on the Û δ
1 -part and further decompose it as K1,δ

t (x) +K2,δ
t (x), where

K1,δ
t (x) ≜ −1

2

∫ t∧δ2

0

∫
R
∇2,δ
x p̂δ0(⌊y⌋)

(∫ ⌊x−y⌋+δ

x−y
ṽδt−s(z)dÛ

δ
1 (z)

)
dyds (6.237)

K2,δ
t (x) ≜ −1

2

∫ t

t∧δ2

∫
R
∇2,δ
x p̂δ⌊s⌋(⌊x− y⌋)

(∫ ⌊y⌋+δ

y

ṽδt−s(z)dÛ
δ
1 (z)

)
dyds. (6.238)

We now upper bound the two terms K1,δ
t (x) and K2,δ

t (x). The term K1,δ
t (x) is handled as

follows: according to (2.81) or (6.80) we have∣∣∇2,δ
x p̂δ0(⌊y⌋)

∣∣ ≲ 1

δ3
1{y:|y|⩽δ}. (6.239)
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In addition the rough integral estimate (4.5), properly extended to a discrete setting as in
the proof of Lemma 6.17, entails that∣∣∣∣∣
∫ ⌊x−y⌋+δ

x−y
ṽδt−s(z)dÛ

δ
1 (z)

∣∣∣∣∣ ⩽ Cκ(Ûδ
1)Θ(ṽδ)λ

α−β
4 E(a, t)e−(λ+θ(a+|y|))s · ((a+ |y|)χδα

+(a+ |y|)2χδ2α + (a+ |y|)2χ+β/2(δ2α+β + δα+2β) + (a+ |y|)2χ(t− s)−β/2δα+2β
)
. (6.240)

By substituting (6.239) and (6.240) into the expression (6.237) of K1,δ
t (x), we obtain that∣∣K1,δ

t (x)
∣∣ ⩽ Cκ(Ûδ

1)Θ(ṽδ)λ
α−β
4 E(a, t) · δα−2χ. (6.241)

To estimate K2,δ
t (x), we assume that t > δ2 (for otherwise K2,δ

t (x) = 0). We first apply the
change of variable x− y =

√
sw to write it as

K2,δ
t (x) ≜ −1

2

∫ t

δ2

∫
R

√
s∇2,δ

x p̂δ⌊s⌋(⌊
√
sw⌋)

(∫ ⌊x−
√
sw⌋+δ

x−
√
sw

ṽδt−s(z)dÛ
δ
1 (z)

)
dwds. (6.242)

Next recall from (6.59) that∣∣∇2,δ
x p̂δ⌊s⌋(⌊

√
sw⌋)

∣∣ ⩽ C1

s3/2
e−C2w2

, ∀s ⩾ δ2, w ∈ R. (6.243)

In addition, invoking again a discrete version of the rough integral estimate (4.5), we have∣∣∣ ∫ ⌊x−
√
sw⌋+δ

x−
√
sw

ṽδt−s(z)dÛ
δ
1 (z)

∣∣∣ ⩽ Cκ(Ûδ
1)Λ

θ′,βλ
α−β
4 Eθ′(a, t)e−(λ+θ

′(a+
√
T |w|))s

×
(
(a+

√
T |w|)χδα + (a+

√
T |w|)2χδ2α + (a+

√
T |w|)2χ+β/2(δ2α+β + δα+2β)

+
(
a+

√
T |w|

)2χ
(t− s)−β/2δα+2β

)
, (6.244)

where we recall that θ′ < θ and Λθ
′,β denotes a uniform upper bound of Θθ′,λ(vδ). As

before, the role of θ′ is to absorb the extra polynomial factors in a, i.e. we choose θ′ < θ so
that (6.233) holds. By substituting (6.243) and (6.244) into the expression (6.238) of K2,δ

t (x),
there are four individual terms coming out (corresponding to the four terms in (6.244)). The
first three terms lead to an s-integral∫ t

δ2

1

s
ds = log

t

δ2
= O(log δ).

The last term leads to an s-integral∫ t

δ2
s−1(t− s)−β/2ds = t−β/2

∫ 1

δ2/t

ρ−1(1− ρ)−β/2dρ ⩽ δ−βO(log δ).

To summarize, we obtain that∣∣K2,δ
t (x)

∣∣ ⩽ Cκ(Ûδ
1)Λ

θ′,βλ
α−β
4 Eθ(a, t)δα log δ. (6.245)

Combining the above estimates (also noting that α − 2χ < α < 1/2 and Λθ,β ⩽ Λθ
′,β), we

can now conclude our E2,δ-estimate as∣∣E2,δ
t (x)

∣∣ ⩽ C(κ(Ûδ
1) + 1)Λθ

′,βλ
α−β
4 Eθ(a, t) · δα−2χ. (6.246)
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Eventually putting together (6.236) and (6.246) into the decomposition (6.232) we obtain
the desired estimate (6.234). □

We finish this section by proving our main result.

Proof of Proposition 6.28. Gathering our estimates in Sections 6.5.2 to 6.5.4 the proof of
relation (6.194) is achieved. □

6.6. Completing the proof of Proposition 6.5. We now put together all estimates ob-
tained so far to establish our main estimate (6.21). To ease notation, we will write

κδ ≜ κα,χ(Û
δ
1), κ ≜ κα,χ(W), ρδ ≜ ρα,χ(Û

δ
1,W),Θ ≜ Θθ,λ(v),Θδ ≜ Θθ,λ(ṽδ),

and also
d(·, ·) ≜ dÛδ

1,W
(·, ·).

In addition, Ci will denote constants depending on all underlying exponents but not on δ, λ.
With all exponents α, β, χ, θ′, β′ given fixed, it follows from Lemmas 6.16, 6.17, 6.23, 6.24,
6.25 and Proposition 6.28 that

d(ṽδ, v) ⩽ d(W1,δ,W) + Θθ,λ

Ûδ
1

(W2,δ) + d(J δ, η)

⩽ C1

[
λ−

α−β
4 κd(ṽδ, v) + (∥f0∥C3

L
+ ∥g∥C3

L
)δβ

+λ
α−β
4 (1 + κδ + κ)(Θδ +Θ+ Λθ

′,β′
)(ρδ + δ

β′(β′−β)

β′+β )

]
. (6.247)

We now fix a choice of λ = λω which satisfies

λ−
α−β′

4 κ̄(ω) ⩽
1

4

so that (cf. Lemma 6.15 and Lemma 6.22)

sup
δ∈(0,1]

Θδ ∨Θ ∨ Λθ
′,β′

⩽ C2e
C3λ
(
∥f0∥C3

L
+ ∥g∥C3

L

)
κ̄(ω),

where we recall that κ̄(ω) is defined by (6.19). It follows from (6.247) that

d(ṽδ, v) ⩽ λ−
α−β
4 C1κd(ṽ

δ, v) + C4e
C5λ
(
∥f0∥C3

L
+ ∥g∥C3

L

)(
δβ + (1 + κ̄(ω))2(ρδ + δ

β′(β′−β)

β′+β )

)
.

(6.248)

By enlarging λ if necessary to ensure that λ−
α−β
4 C1κ ⩽ 1/2, one can then move the first term

on the right hand side of (6.248) to the left and the desired estimate (6.21) thus follows.
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